File size: 4,325 Bytes
ffbb48e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import nibabel as nib
import os
from torch.utils.data import Dataset
import numpy as np
import matplotlib.pyplot as plt
from skimage.transform import resize 
from PIL import Image
import random


AX_INDEX = 78
COR_INDEX = 79
SAG_INDEX = 57
AX_SCETION = "[:, :, slice_i]"
COR_SCETION = "[:, slice_i, :]"
SAG_SCETION = "[slice_i, :, :]"


class AD_Standard_2DTestingSlices(Dataset):
    """labeled Faces in the Wild dataset."""
    
    def __init__(self, root_dir, data_file, transform=None, slice = slice, size = 9):
        """
        Args:
            root_dir (string): Directory of all the images.
            data_file (string): File name of the train/test split file.
            transform (callable, optional): Optional transform to be applied on a sample.
            data_augmentation (boolean): Optional data augmentation.
        """
        self.root_dir = root_dir
        self.data_file = data_file
        self.transform = transform
        self.size = size
    
    def __len__(self):
        return sum(1 for line in open(self.data_file))
    
    def __getitem__(self, idx):
        df = open(self.data_file)
        lines = df.readlines()
        lst = lines[idx].split()
        img_name = lst[0]
        img_label = lst[1]
        image_path = os.path.join(self.root_dir, img_name)
        image = nib.load(image_path)
        samples = []
        if img_label == 'Normal':
            label = 0
        elif img_label == 'AD':
            label = 1
        elif img_label == 'MCI':
            label = 2

        AXimageList = None
        CORimageList = None
        SAGimageList = None

        if self.size == 3:
            AXimageList = axKeySlice(image)
            CORimageList = corKeySlice(image)
            SAGimageList = sagKeySlice(image)
        elif self.size == 9:
            AXimageList = ax3Slices(image)
            CORimageList = cor3Slices(image)
            SAGimageList = sag3Slices(image)


        for img2DList in (AXimageList, CORimageList, SAGimageList):
            for image2D in img2DList:
                if self.transform:
                    image2D = self.transform(image2D)
                sample = {'image': image2D, 'label': label}
                samples.append(sample)
        assert len(samples) == self.size
        random.shuffle(samples)
        return samples



def getSlice(image_array, keyIndex, section, step = 1):
    slice_p = keyIndex
    slice_2Dimgs = []
    slice_select_0 = None
    slice_select_1 = None
    slice_select_2 = None
    i = 0
    for slice_i in range(slice_p-step, slice_p+step+1, step):
        slice_select = eval("image_array"+section)
        exec("slice_select_"+str(i)+"=slice_select")
        i += 1
    slice_2Dimg = np.stack((slice_select_0, slice_select_1, slice_select_2), axis = 2)
    slice_2Dimgs.append(slice_2Dimg)
    return slice_2Dimgs


def axKeySlice(image):
    image_array = np.array(image.get_data())
    return getSlice(image_array, AX_INDEX, AX_SCETION)


def corKeySlice(image):
    image_array = np.array(image.get_data())
    return getSlice(image_array, COR_INDEX, COR_SCETION)


def sagKeySlice(image):
    image_array = np.array(image.get_data())
    return getSlice(image_array, SAG_INDEX, SAG_SCETION)



def get3Slices(image_array, keyIndex, section, step = 1):
    slice_p = keyIndex
    slice_2Dimgs = []
    slice_select_0 = None
    slice_select_1 = None
    slice_select_2 = None
    for shift in (-5, 0, 5):
        slice_sp = slice_p + shift
        i = 0
        slice_select_0 = None
        slice_select_1 = None
        slice_select_2 = None
        for slice_i in range(slice_sp-step, slice_sp+step+1, step):
            slice_select = eval("image_array"+section)
            exec("slice_select_"+str(i)+"=slice_select")
            i += 1
        slice_2Dimg = np.stack((slice_select_0, slice_select_1, slice_select_2), axis = 2)
        slice_2Dimgs.append(slice_2Dimg)
    return slice_2Dimgs



def ax3Slices(image):
    image_array = np.array(image.get_data())
    return get3Slices(image_array, AX_INDEX, AX_SCETION)


def cor3Slices(image):
    image_array = np.array(image.get_data())
    return get3Slices(image_array, COR_INDEX, COR_SCETION)


def sag3Slices(image):
    image_array = np.array(image.get_data())
    return get3Slices(image_array, SAG_INDEX, SAG_SCETION)