File size: 24,458 Bytes
621ad1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
import gradio as gr
import random, math
from transformers import pipeline
from PyPDF2 import PdfReader

##############################
# Helper Functions
##############################

def sigmoid(x):
    return 1 / (1 + math.exp(-x))

def extract_pdf_text(pdf_file):
    """Extract text from an uploaded PDF file using PyPDF2."""
    try:
        reader = PdfReader(pdf_file.name)  # pdf_file.name gives the filename in Colab
        text = ""
        for page in reader.pages:
            text += page.extract_text()
        return text
    except Exception as e:
        return f"Error extracting PDF text: {e}"

##############################
# Callback to update visibility of "Other" fields
##############################

def update_visibility(choice):
    if choice == "Other":
        return gr.update(visible=True)
    else:
        return gr.update(visible=False)

##############################
# Prediction function for non-MRI data (with PDF extraction)
##############################

def predict_without_mri(

    # Section A: Patient Demographics

    age, gender, ethnicity, education, pincode, mobile,

    # Section B: Medical History

    family_history, family_relationship, conditions, medications,

    # Section C: Basic Cognitive Assessment

    basic_memory_changes, basic_memory_desc, basic_difficulty_recent,

    basic_trouble_words, basic_problem_solving, basic_trouble_appointments,

    basic_changes_reaction, basic_driving_concern,

    # Section IV: Lifestyle Factors

    smoking_status, alcohol_consumption, physical_activity,

    # Section E: Physical & Neurological Exam (using "Other" options)

    reflexes_choice, reflexes_other,

    muscle_tone_choice, muscle_tone_other,

    coordination_choice, coordination_other,

    balance_choice, balance_other,

    sight_hearing_choice, sight_hearing_other,

    # Section V: Detailed Cognitive & Functional Assessment

    # A. Memory

    mem_diff_recent, mem_forget_appointments, mem_repeat, mem_learning,

    # B. Language

    lang_find_words, lang_understand, lang_follow,

    # C. Executive Function

    exec_plan, exec_decide, exec_finance,

    # D. Visuospatial Skills

    visuospatial_judge, visuospatial_navigate, visuospatial_recognize,

    # E. Attention and Concentration

    attention_focus, attention_distracted, attention_instructions,

    # F. Functional Abilities

    func_ADL, func_medications, func_transport,

    # Section VI: Behavioral and Emotional Changes

    behavior_mood_change, behavior_mood_change_desc, behavior_anxiety, behavior_irritability, behavior_loss_interest,

    # Section VII: Additional Comments

    additional_comments,

    # Section G: Blood-Based Biomarkers

    p_tau217, abeta42, abeta40, miRNAs,

    # Section H: Basic Cognitive & Functional Assessment Scores

    mmse, adas_cog, faq, ravlt,

    # PDF Report Upload (new)

    pdf_report

):
    # Convert numeric strings to floats
    try:
        mmse = float(mmse)
    except:
        mmse = 0.0
    try:
        adas = float(adas_cog)
    except:
        adas = 0.0
    try:
        p_tau217 = float(p_tau217)
    except:
        p_tau217 = 0.0
    try:
        abeta42 = float(abeta42)
    except:
        abeta42 = 0.0
    try:
        abeta40 = float(abeta40)
    except:
        abeta40 = 1.0  # avoid division by zero
    try:
        abeta_ratio = abeta42 / abeta40
    except:
        abeta_ratio = 0.0

    # Dummy calculative model with illustrative coefficients
    w_age = 0.05
    w_education = -0.1
    w_mmse = -0.05
    w_adas = 0.05
    w_ptau = 0.02
    w_abeta_ratio = 0.5
    bias = -5.0

    risk_value = (w_age * age + w_education * education + w_mmse * mmse +
                  w_adas * adas + w_ptau * p_tau217 + w_abeta_ratio * abeta_ratio + bias)
    risk_probability = sigmoid(risk_value)
    
    if risk_probability < 0.33:
        risk_category = "Low Risk"
    elif risk_probability < 0.66:
        risk_category = "Moderate Risk"
    else:
        risk_category = "High Risk"
    
    # Extract text from PDF if provided
    if pdf_report is not None:
        pdf_text = extract_pdf_text(pdf_report)
    else:
        pdf_text = "No PDF report provided."

    result = f"""### Prediction Result: {risk_category}

Calculated Risk Probability: {risk_probability*100:.2f}%



**Section A: Patient Demographics**

- Age: {age}

- Gender: {gender}

- Ethnicity: {ethnicity}

- Years of Education: {education}

- Pincode: {pincode}

- Mobile Number: {mobile}



**Section B: Medical History**

- Family history of Alzheimer's/dementia: {family_history}

- Relationship: {family_relationship if family_history == "Yes" else "N/A"}

- Conditions: {', '.join(conditions) if conditions else 'None'}

- Current Medications: {medications}



**Section C: Basic Cognitive Assessment**

- Recent changes in memory: {basic_memory_changes}

- Description: {basic_memory_desc}

- Difficulty remembering recent events: {basic_difficulty_recent}

- Trouble finding the right words: {basic_trouble_words}

- Difficulty with problem-solving: {basic_problem_solving}

- Trouble with appointments/medications: {basic_trouble_appointments}

- Changes in reactions: {basic_changes_reaction}

- Concerns about driving: {basic_driving_concern}



**Section IV: Lifestyle Factors**

- Smoking status: {smoking_status}

- Alcohol consumption: {alcohol_consumption}

- Physical activity level: {physical_activity}



**Section E: Physical & Neurological Exam**

- Reflexes: {reflexes_choice if reflexes_choice != "Other" else reflexes_other}

- Muscle tone and strength: {muscle_tone_choice if muscle_tone_choice != "Other" else muscle_tone_other}

- Coordination: {coordination_choice if coordination_choice != "Other" else coordination_other}

- Balance: {balance_choice if balance_choice != "Other" else balance_other}

- Sense of sight and hearing: {sight_hearing_choice if sight_hearing_choice != "Other" else sight_hearing_other}



**Section V: Detailed Cognitive & Functional Assessment**

*A. Memory*

- Difficulty remembering recent events: {mem_diff_recent}

- Forget appointments or important dates: {mem_forget_appointments}

- Repeat questions or statements: {mem_repeat}

- Trouble learning new information: {mem_learning}



*B. Language*

- Trouble finding the right words: {lang_find_words}

- Difficulty understanding what people say: {lang_understand}

- Trouble following conversations: {lang_follow}



*C. Executive Function*

- Difficulty planning/organizing tasks: {exec_plan}

- Trouble making decisions/solving problems: {exec_decide}

- Hard to manage finances: {exec_finance}



*D. Visuospatial Skills*

- Difficulty judging distances: {visuospatial_judge}

- Trouble finding your way around familiar places: {visuospatial_navigate}

- Difficulty recognizing faces: {visuospatial_recognize}



*E. Attention and Concentration*

- Difficulty focusing: {attention_focus}

- Easily distracted: {attention_distracted}

- Trouble following instructions: {attention_instructions}



*F. Functional Abilities*

- Need assistance with ADLs: {func_ADL}

- Difficulty managing medications: {func_medications}

- Difficulty driving/using public transport: {func_transport}



**Section VI: Behavioral and Emotional Changes**

- Changes in mood or personality: {behavior_mood_change}

- Description of mood changes: {behavior_mood_change_desc if behavior_mood_change == "Yes" else "N/A"}

- More anxious or depressed: {behavior_anxiety}

- More irritable or agitated: {behavior_irritability}

- Lost interest in activities: {behavior_loss_interest}



**Section VII: Additional Comments**

{additional_comments}



**Section G: Blood-Based Biomarkers**

- p-tau217: {p_tau217}

- Aβ42: {abeta42}

- Aβ40: {abeta40}

- miRNAs: {miRNAs}



**Section H: Basic Cognitive & Functional Assessment Scores**

- MMSE: {mmse}

- ADAS-Cog: {adas_cog}

- FAQ: {faq}

- RAVLT: {ravlt}



**Uploaded PDF Report Details:**

{pdf_text}

"""
    return result

##############################
# Prediction function for MRI using a Hugging Face pipeline
##############################
pipe = pipeline("image-classification", model="evanrsl/resnet-Alzheimer")
#pipe = pipeline("image-classification", model="evanrsl/resnet-Alzheimer")
#def predict_with_mri(image):
def predict_alzheimer(image, age, gender, ethnicity):
    """

    Predict Alzheimer’s status from an uploaded image using the pretrained pipeline,

    and include demographic information (age, gender, ethnicity) in the output.

    """
    # Run the pipeline on the input image
    results = pipe(image)
    # Assume the pipeline returns a list of dictionaries; we'll take the top result.
    print(results)
    label = results[0]['label']
    confidence = results[0]['score'] * 100  # convert to percentage

    # Create output text combining prediction and demographic info
    output_text = (f"**Prediction:** {label}\n"
                   f"**Confidence:** {confidence:.2f}%\n\n"
                   f"**Demographics:**\n"
                   f"- Age: {age}\n"
                   f"- Gender: {gender}\n"
                   f"- Ethnicity: {ethnicity}\n"
                   f"Note: Prediction may be Non-Demented to High-Demented\n Confidence suggests that how the model is sure of this prediction")
    return output_text


##############################
# Gradio App Interface Configuration
##############################
with gr.Blocks() as demo:
    gr.Markdown("# ADAP System : Alzheimer Detection, Assessment & Prediction System")
    
    with gr.Tabs():
        ###########################
        # Tab: Without MRI Data   #
        ###########################
        with gr.Tab("Without MRI Data"):
            gr.Markdown("### Please fill out the following form:")
            # Section A: Patient Demographics
            with gr.Column():
                gr.Markdown("#### Section A: Patient Demographics")
                age = gr.Number(label="Age (years)", value=60)
                gender = gr.Radio(label="Gender", choices=["Male", "Female", "Other"])
                ethnicity = gr.Textbox(label="Ethnicity", placeholder="Enter ethnicity")
                education = gr.Number(label="Years of Education", value=12)
                pincode = gr.Textbox(label="Pincode", placeholder="Enter your pincode")
                mobile = gr.Textbox(label="Mobile Number", placeholder="Enter your mobile number")
            # Section B: Medical History
            with gr.Column():
                gr.Markdown("#### Section B: Medical History")
                family_history = gr.Radio(label="Do you have a family history of Alzheimer's disease or dementia?", choices=["Yes", "No"])
                family_relationship = gr.Textbox(label="If yes, please specify the relationship", placeholder="e.g., Mother, Father, Grandparent")
                conditions = gr.CheckboxGroup(label="Do you have any of the following conditions?", choices=["High blood pressure", "Heart disease", "Stroke", "Diabetes", "High cholesterol", "Head injuries"])
                medications = gr.Textbox(label="List any current medications", lines=3, placeholder="Enter current medications")
            # Section C: Basic Cognitive Assessment
            with gr.Column():
                gr.Markdown("#### Section C: Basic Cognitive Assessment")
                basic_memory_changes = gr.Radio(label="Have you noticed any recent changes in your memory?", choices=["Yes", "No"])
                basic_memory_desc = gr.Textbox(label="If yes, please describe", lines=3, placeholder="Describe any changes")
                basic_difficulty_recent = gr.Radio(label="Do you have difficulty remembering recent events?", choices=["Not at all", "Mild", "Moderate", "Severe"])
                basic_trouble_words = gr.Radio(label="Do you have trouble finding the right words?", choices=["Not at all", "Mild", "Moderate", "Severe"])
                basic_problem_solving = gr.Radio(label="Do you have difficulty with problem-solving or decision-making?", choices=["Not at all", "Mild", "Moderate", "Severe"])
                basic_trouble_appointments = gr.Radio(label="Are you having trouble remembering healthcare appointments or when to take your medicines?", choices=["Yes", "No"])
                basic_changes_reaction = gr.Radio(label="Have you noticed any changes in the way you tend to react to people or events?", choices=["Yes", "No"])
                basic_driving_concern = gr.Radio(label="Does anyone express unusual concern about your driving?", choices=["Yes", "No"])
            # Section IV: Lifestyle Factors
            with gr.Column():
                gr.Markdown("#### Section IV: Lifestyle Factors")
                smoking_status = gr.Radio(label="Smoking status", choices=["Yes", "No"])
                alcohol_consumption = gr.Dropdown(label="Alcohol consumption", choices=["None", "Occasional", "Regular", "Heavy"])
                physical_activity = gr.Dropdown(label="Physical activity level", choices=["Sedentary", "Moderate", "Active"])
            # Section E: Physical & Neurological Exam with "Other" options
            with gr.Column():
                gr.Markdown("#### Section E: Physical & Neurological Exam")
                reflexes_choice = gr.Radio(label="Reflexes", choices=["Normal", "Diminished", "Hyperactive", "Other"], value="Normal")
                reflexes_other = gr.Textbox(label="If Other, please describe", placeholder="Describe reflexes", visible=False)
                reflexes_choice.change(fn=update_visibility, inputs=reflexes_choice, outputs=reflexes_other)

                muscle_tone_choice = gr.Radio(label="Muscle tone and strength", choices=["Normal", "Reduced", "Increased", "Other"], value="Normal")
                muscle_tone_other = gr.Textbox(label="If Other, please describe", placeholder="Describe muscle tone and strength", visible=False)
                muscle_tone_choice.change(fn=update_visibility, inputs=muscle_tone_choice, outputs=muscle_tone_other)

                coordination_choice = gr.Radio(label="Coordination", choices=["Normal", "Impaired", "Other"], value="Normal")
                coordination_other = gr.Textbox(label="If Other, please describe", placeholder="Describe coordination", visible=False)
                coordination_choice.change(fn=update_visibility, inputs=coordination_choice, outputs=coordination_other)

                balance_choice = gr.Radio(label="Balance", choices=["Stable", "Impaired", "Other"], value="Stable")
                balance_other = gr.Textbox(label="If Other, please describe", placeholder="Describe balance", visible=False)
                balance_choice.change(fn=update_visibility, inputs=balance_choice, outputs=balance_other)

                sight_hearing_choice = gr.Radio(label="Sense of sight and hearing", choices=["Normal", "Impaired", "Other"], value="Normal")
                sight_hearing_other = gr.Textbox(label="If Other, please describe", placeholder="Describe any issues", visible=False)
                sight_hearing_choice.change(fn=update_visibility, inputs=sight_hearing_choice, outputs=sight_hearing_other)
            # Section V: Detailed Cognitive & Functional Assessment
            with gr.Column():
                gr.Markdown("#### Section V: Detailed Cognitive & Functional Assessment")
                gr.Markdown("**A. Memory**")
                mem_diff_recent = gr.Radio(label="Do you have difficulty remembering recent events?", choices=["Not at all", "Mildly", "Moderately", "Severely"])
                mem_forget_appointments = gr.Radio(label="Do you forget appointments or important dates more often than before?", choices=["Not at all", "Mildly", "Moderately", "Severely"])
                mem_repeat = gr.Radio(label="Do you repeat questions or statements during a conversation?", choices=["Not at all", "Mildly", "Moderately", "Severely"])
                mem_learning = gr.Radio(label="Do you have trouble learning new information?", choices=["Not at all", "Mildly", "Moderately", "Severely"])
                gr.Markdown("**B. Language**")
                lang_find_words = gr.Radio(label="Do you have trouble finding the right words to express yourself?", choices=["Not at all", "Mildly", "Moderately", "Severely"])
                lang_understand = gr.Radio(label="Do you have difficulty understanding what people are saying?", choices=["Not at all", "Mildly", "Moderately", "Severely"])
                lang_follow = gr.Radio(label="Do you have trouble following conversations?", choices=["Not at all", "Mildly", "Moderately", "Severely"])
                gr.Markdown("**C. Executive Function**")
                exec_plan = gr.Radio(label="Do you have difficulty planning and organizing tasks?", choices=["Not at all", "Mildly", "Moderately", "Severely"])
                exec_decide = gr.Radio(label="Do you have trouble making decisions or solving problems?", choices=["Not at all", "Mildly", "Moderately", "Severely"])
                exec_finance = gr.Radio(label="Do you find it hard to manage your finances?", choices=["Not at all", "Mildly", "Moderately", "Severely"])
                gr.Markdown("**D. Visuospatial Skills**")
                visuospatial_judge = gr.Radio(label="Do you have difficulty judging distances?", choices=["Not at all", "Mildly", "Moderately", "Severely"])
                visuospatial_navigate = gr.Radio(label="Do you have trouble finding your way around familiar places?", choices=["Not at all", "Mildly", "Moderately", "Severely"])
                visuospatial_recognize = gr.Radio(label="Do you have trouble recognizing faces?", choices=["Not at all", "Mildly", "Moderately", "Severely"])
                gr.Markdown("**E. Attention and Concentration**")
                attention_focus = gr.Radio(label="Do you have difficulty focusing your attention?", choices=["Not at all", "Mildly", "Moderately", "Severely"])
                attention_distracted = gr.Radio(label="Are you easily distracted?", choices=["Not at all", "Mildly", "Moderately", "Severely"])
                attention_instructions = gr.Radio(label="Do you have trouble following instructions?", choices=["Not at all", "Mildly", "Moderately", "Severely"])
                gr.Markdown("**F. Functional Abilities**")
                func_ADL = gr.Radio(label="Do you need assistance with activities of daily living (bathing, dressing, eating)?", choices=["Not at all", "Mildly", "Moderately", "Severely"])
                func_medications = gr.Radio(label="Do you have difficulty managing your medications?", choices=["Not at all", "Mildly", "Moderately", "Severely"])
                func_transport = gr.Radio(label="Do you have difficulty driving or using public transportation?", choices=["Not at all", "Mildly", "Moderately", "Severely"])
            # Section VI: Behavioral and Emotional Changes
            with gr.Column():
                gr.Markdown("#### Section VI: Behavioral and Emotional Changes")
                behavior_mood_change = gr.Radio(label="Have you noticed any changes in your mood or personality?", choices=["Yes", "No"])
                behavior_mood_change_desc = gr.Textbox(label="If Yes, please describe", lines=3, placeholder="Describe changes")
                behavior_anxiety = gr.Radio(label="Do you feel more anxious or depressed than usual?", choices=["Yes", "No"])
                behavior_irritability = gr.Radio(label="Are you more irritable or agitated than usual?", choices=["Yes", "No"])
                behavior_loss_interest = gr.Radio(label="Have you lost interest in activities you used to enjoy?", choices=["Yes", "No"])
            # Section VII: Additional Comments
            with gr.Column():
                gr.Markdown("#### Section VII: Additional Comments")
                additional_comments = gr.Textbox(label="Please provide any additional comments", lines=3, placeholder="Enter additional comments here")
            # Section G: Blood-Based Biomarkers
            with gr.Column():
                gr.Markdown("#### Section G: Blood-Based Biomarkers")
                p_tau217 = gr.Textbox(label="p-tau217 (pg/mL)", placeholder="Enter value")
                abeta42 = gr.Textbox(label="Aβ42 (pg/mL)", placeholder="Enter value")
                abeta40 = gr.Textbox(label="Aβ40 (pg/mL)", placeholder="Enter value")
                miRNAs = gr.Textbox(label="miRNAs (List with values)", lines=2, placeholder="e.g., miR-1: 2.5, miR-2: 3.0")
            # Section H: Basic Cognitive & Functional Assessment Scores
            with gr.Column():
                gr.Markdown("#### Section H: Basic Cognitive & Functional Assessment Scores")
                mmse = gr.Textbox(label="MMSE Score", placeholder="Enter MMSE score")
                adas_cog = gr.Textbox(label="ADAS-Cog Score", placeholder="Enter ADAS-Cog score")
                faq = gr.Textbox(label="FAQ Score", placeholder="Enter FAQ score")
                ravlt = gr.Textbox(label="RAVLT Score", placeholder="Enter RAVLT score")
            # Section: Upload PDF Report for additional details
            with gr.Column():
                gr.Markdown("#### Additional Document (Optional)")
                pdf_report = gr.File(label="Upload PDF Report (optional)", file_types=['.pdf'])
            
            predict_btn_no_mri = gr.Button("Predict Alzheimer's Risk")
            output_no_mri = gr.Textbox(label="Prediction Result", lines=35)
            predict_btn_no_mri.click(
                fn=predict_without_mri,
                inputs=[
                    age, gender, ethnicity, education, pincode, mobile,
                    family_history, family_relationship, conditions, medications,
                    basic_memory_changes, basic_memory_desc, basic_difficulty_recent,
                    basic_trouble_words, basic_problem_solving, basic_trouble_appointments,
                    basic_changes_reaction, basic_driving_concern,
                    smoking_status, alcohol_consumption, physical_activity,
                    reflexes_choice, reflexes_other,
                    muscle_tone_choice, muscle_tone_other,
                    coordination_choice, coordination_other,
                    balance_choice, balance_other,
                    sight_hearing_choice, sight_hearing_other,
                    mem_diff_recent, mem_forget_appointments, mem_repeat, mem_learning,
                    lang_find_words, lang_understand, lang_follow,
                    exec_plan, exec_decide, exec_finance,
                    visuospatial_judge, visuospatial_navigate, visuospatial_recognize,
                    attention_focus, attention_distracted, attention_instructions,
                    func_ADL, func_medications, func_transport,
                    behavior_mood_change, behavior_mood_change_desc, behavior_anxiety, behavior_irritability, behavior_loss_interest,
                    additional_comments,
                    p_tau217, abeta42, abeta40, miRNAs,
                    mmse, adas_cog, faq, ravlt,
                    pdf_report
                ],
                outputs=output_no_mri
            )
        
        ###########################
        # Tab: With MRI Image      #
        ###########################
        with gr.Tab("With MRI Image"):
            gr.Markdown("# ADAP System : Alzheimer Detection, Assessment & Prediction System")
            gr.Markdown("### With MRI Data: Upload an MRI scan and provide your demographic details")

            with gr.Row():
                image_input = gr.Image(label="Upload MRI Scan", type="pil")
                age_input = gr.Number(label="Age (years)", value=65)

            gender_input = gr.Radio(label="Gender", choices=["Male", "Female", "Other"], value="Male")
            ethnicity_input = gr.Textbox(label="Ethnicity", placeholder="Enter your ethnicity")

            predict_button = gr.Button("Predict Alzheimer's")
            output_box = gr.Textbox(label="Prediction Result", lines=8)

            predict_button.click(fn=predict_alzheimer, inputs=[image_input, age_input, gender_input, ethnicity_input], outputs=output_box)

# Launch the Gradio app
demo.launch()