File size: 10,400 Bytes
dd17995 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import os
import streamlit as st
from dotenv import load_dotenv
from groq import Groq
import json
from typing import List, Dict
import time
# Load environment variables from .env file
load_dotenv()
# Initialize the Groq client
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
class TranslationManager:
def __init__(self):
self.chunk_size = 1500
self.overlap_size = 200
self.context_window = []
def chunk_text_with_context(self, text: str) -> List[Dict]:
"""Split text into chunks while maintaining context"""
words = text.split()
chunks = []
current_chunk = []
current_length = 0
for i, word in enumerate(words):
current_chunk.append(word)
current_length += len(word) + 1
# Check if chunk size is reached
if current_length >= self.chunk_size:
# Add overlap from next words if available
overlap_words = words[i+1:i+1+self.overlap_size] if i+1 < len(words) else []
chunks.append({
'main_text': ' '.join(current_chunk),
'overlap_text': ' '.join(overlap_words),
'position': len(chunks)
})
# Start new chunk with some overlap
current_chunk = words[max(0, i-50):i+1]
current_length = sum(len(w) + 1 for w in current_chunk)
# Add remaining text as last chunk
if current_chunk:
chunks.append({
'main_text': ' '.join(current_chunk),
'overlap_text': '',
'position': len(chunks)
})
return chunks
def create_translation_prompt(self, chunk: Dict, mode: str, domain: str = None) -> str:
"""Create appropriate prompt based on translation mode"""
if mode == "normal":
prompt = f"""Translate the following English text to Tamil.
Provide only the Tamil translation without any other text.
English text: {chunk['main_text']}"""
else: # contextual
context = f"Domain: {domain}\n" if domain else ""
previous_context = self.context_window[-1] if self.context_window else ""
prompt = f"""Perform a contextual translation from English to Tamil.
Consider the following aspects:
{context}
Previous context: {previous_context}
Maintain the following in your translation:
- Preserve domain-specific terminology
- Maintain consistent style and tone
- Ensure contextual coherence with previous translations
- Adapt idiomatic expressions appropriately
Text to translate: {chunk['main_text']}
Overlap context: {chunk['overlap_text']}
Provide only the Tamil translation without any explanations."""
return prompt
def translate_chunk(self, chunk: Dict, mode: str, domain: str = None) -> str:
"""Translate a single chunk of text"""
prompt = self.create_translation_prompt(chunk, mode, domain)
max_retries = 3
for attempt in range(max_retries):
try:
completion = client.chat.completions.create(
model="Gemma2-9b-It",
messages=[
{
"role": "user",
"content": prompt
}
],
temperature=0.3 if mode == "normal" else 0.4,
max_tokens=2048,
top_p=1,
stream=True,
stop=None,
)
translation = ""
for chunk_response in completion:
translation += chunk_response.choices[0].delta.content or ""
# Update context window for contextual translation
if mode == "contextual":
self.context_window.append(translation)
if len(self.context_window) > 3:
self.context_window.pop(0)
return translation
except Exception as e:
if attempt == max_retries - 1:
raise e
time.sleep(2) # Wait before retry
return ""
def main():
st.set_page_config(page_title="Advanced Tamil Translator", layout="wide")
# Initialize translation manager
if 'translation_manager' not in st.session_state:
st.session_state.translation_manager = TranslationManager()
if 'translation_history' not in st.session_state:
st.session_state.translation_history = []
st.title("Advanced English to Tamil Translator")
# Translation settings
with st.expander("Translation Settings", expanded=True):
col1, col2 = st.columns(2)
with col1:
translation_mode = st.radio(
"Translation Mode",
["Normal", "Contextual"],
help="Normal: Direct translation\nContextual: Context-aware translation with domain specificity"
)
with col2:
if translation_mode == "Contextual":
domain = st.selectbox(
"Select Domain",
["General", "Technical", "Medical", "Legal", "Literary", "Business", "Academic"],
help="Select the domain to improve translation accuracy"
)
# Input area
st.subheader("Enter Text")
english_input = st.text_area("Enter English text of any length:", height=200)
# Translation button
if st.button("Translate"):
if not english_input:
st.error("Please enter some text to translate.")
return
try:
# Initialize progress tracking
progress_bar = st.progress(0)
status_text = st.empty()
# Reset context window for new translation
st.session_state.translation_manager.context_window = []
# Chunk the input text
chunks = st.session_state.translation_manager.chunk_text_with_context(english_input)
translated_chunks = []
# Translate each chunk
for i, chunk in enumerate(chunks):
status_text.text(f"Translating part {i+1} of {len(chunks)}...")
translation = st.session_state.translation_manager.translate_chunk(
chunk,
mode=translation_mode.lower(),
domain=domain if translation_mode == "Contextual" else None
)
translated_chunks.append(translation)
progress_bar.progress((i + 1) / len(chunks))
# Combine translations
final_translation = ' '.join(translated_chunks)
# Display results
col1, col2 = st.columns(2)
with col1:
st.subheader("Original Text")
st.write(english_input)
st.info(f"Word count: {len(english_input.split())}")
with col2:
st.subheader("Tamil Translation")
st.write(final_translation)
# Add to history
st.session_state.translation_history.append({
'english': english_input,
'tamil': final_translation,
'mode': translation_mode,
'domain': domain if translation_mode == "Contextual" else "N/A",
'timestamp': time.strftime("%Y-%m-%d %H:%M:%S")
})
# Download options
col1, col2 = st.columns(2)
with col1:
st.download_button(
"Download Translation",
final_translation,
file_name=f"tamil_translation_{translation_mode.lower()}.txt",
mime="text/plain"
)
with col2:
# Export translation with metadata
export_data = {
'original': english_input,
'translation': final_translation,
'mode': translation_mode,
'domain': domain if translation_mode == "Contextual" else "N/A",
'timestamp': time.strftime("%Y-%m-%d %H:%M:%S")
}
st.download_button(
"Export with Metadata",
json.dumps(export_data, indent=2),
file_name="translation_with_metadata.json",
mime="application/json"
)
except Exception as e:
st.error(f"An error occurred: {str(e)}")
finally:
progress_bar.empty()
status_text.empty()
# Translation History
if st.session_state.translation_history:
with st.expander("Translation History"):
for i, entry in enumerate(reversed(st.session_state.translation_history[-5:])):
st.write(f"Translation {len(st.session_state.translation_history)-i}")
st.write(f"Mode: {entry['mode']}")
if entry['domain'] != "N/A":
st.write(f"Domain: {entry['domain']}")
st.write(f"Timestamp: {entry['timestamp']}")
st.write("English:", entry['english'][:100] + "..." if len(entry['english']) > 100 else entry['english'])
st.write("Tamil:", entry['tamil'][:100] + "..." if len(entry['tamil']) > 100 else entry['tamil'])
st.markdown("---")
if __name__ == "__main__":
main() |