Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,117 +1,33 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
import numpy as np
|
| 4 |
-
from flask import Flask, request, render_template, jsonify
|
| 5 |
-
from werkzeug.utils import secure_filename
|
| 6 |
-
import os
|
| 7 |
from huggingface_hub import hf_hub_download
|
| 8 |
-
from
|
| 9 |
-
|
| 10 |
-
# Initialize Flask app
|
| 11 |
-
app = Flask(__name__)
|
| 12 |
|
| 13 |
# Load model from Hugging Face Hub
|
| 14 |
model_path = hf_hub_download(repo_id="arpitsharrrma/soilnet-model", filename="SoilNet.keras")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
SoilNet = keras.models.load_model(model_path)
|
| 17 |
-
|
| 18 |
-
# Classes dictionary
|
| 19 |
-
classes = {
|
| 20 |
-
0: "Alluvial Soil:-{ Rice, Wheat, Sugarcane, Maize, Cotton, Soyabean, Jute }",
|
| 21 |
-
1: "Black Soil:-{ Virginia, Wheat, Jowar, Millets, Linseed, Castor, Sunflower }",
|
| 22 |
-
2: "Clay Soil:-{ Rice, Lettuce, Chard, Broccoli, Cabbage, Snap Beans }",
|
| 23 |
-
3: "Red Soil:-{ Cotton, Wheat, Pulses, Millets, Oil Seeds, Potatoes }"
|
| 24 |
-
}
|
| 25 |
-
|
| 26 |
-
# API Key (set this securely in prod)
|
| 27 |
-
API_KEY = "your-secret-api-key-1234"
|
| 28 |
-
|
| 29 |
-
# Prediction function
|
| 30 |
-
def model_predict(image_path, model):
|
| 31 |
-
image = load_img(image_path, target_size=(224, 224))
|
| 32 |
-
image = img_to_array(image) / 255.0
|
| 33 |
-
image = np.expand_dims(image, axis=0)
|
| 34 |
-
|
| 35 |
-
result = np.argmax(model.predict(image), axis=-1)[0]
|
| 36 |
-
prediction = classes[result]
|
| 37 |
-
|
| 38 |
-
if result == 0:
|
| 39 |
-
return "Alluvial", "Alluvial.html"
|
| 40 |
-
elif result == 1:
|
| 41 |
-
return "Black", "Black.html"
|
| 42 |
-
elif result == 2:
|
| 43 |
-
return "Clay", "Clay.html"
|
| 44 |
-
elif result == 3:
|
| 45 |
-
return "Red", "Red.html"
|
| 46 |
-
|
| 47 |
-
# Route: Home (form)
|
| 48 |
-
@app.route('/', methods=['GET'])
|
| 49 |
-
def index():
|
| 50 |
-
return render_template('index.html')
|
| 51 |
-
|
| 52 |
-
# Route: Form-based upload + result display
|
| 53 |
-
@app.route('/predict', methods=['POST'])
|
| 54 |
-
def predict():
|
| 55 |
-
file = request.files.get('image')
|
| 56 |
-
if not file or file.filename == '':
|
| 57 |
-
return "No image uploaded", 400
|
| 58 |
-
|
| 59 |
-
# Validate extension
|
| 60 |
-
filename = secure_filename(file.filename)
|
| 61 |
-
if not filename.lower().endswith(('.jpg', '.jpeg', '.png', '.bmp', '.gif')):
|
| 62 |
-
return "Unsupported file type", 400
|
| 63 |
-
|
| 64 |
-
# Save image
|
| 65 |
-
upload_folder = os.path.join(os.path.dirname(__file__), 'static', 'user_uploaded')
|
| 66 |
-
os.makedirs(upload_folder, exist_ok=True)
|
| 67 |
-
file_path = os.path.join(upload_folder, filename)
|
| 68 |
-
file.save(file_path)
|
| 69 |
-
|
| 70 |
-
# Check image is valid
|
| 71 |
-
try:
|
| 72 |
-
_ = load_img(file_path)
|
| 73 |
-
except Exception as e:
|
| 74 |
-
os.remove(file_path)
|
| 75 |
-
return f"Invalid image file: {e}", 400
|
| 76 |
-
|
| 77 |
-
pred, output_page = model_predict(file_path, SoilNet)
|
| 78 |
-
user_image_path = os.path.join('static', 'user_uploaded', filename)
|
| 79 |
-
|
| 80 |
-
return render_template(output_page, pred_output=pred, user_image=user_image_path)
|
| 81 |
-
|
| 82 |
-
# Route: API endpoint with API key
|
| 83 |
-
@app.route('/api/predict', methods=['POST'])
|
| 84 |
-
def api_predict():
|
| 85 |
-
key = request.headers.get('x-api-key')
|
| 86 |
-
if key != API_KEY:
|
| 87 |
-
return jsonify({"error": "Unauthorized"}), 401
|
| 88 |
-
|
| 89 |
-
file = request.files.get('image')
|
| 90 |
-
if not file or file.filename == '':
|
| 91 |
-
return jsonify({"error": "No image uploaded"}), 400
|
| 92 |
-
|
| 93 |
-
filename = secure_filename(file.filename)
|
| 94 |
-
if not filename.lower().endswith(('.jpg', '.jpeg', '.png', '.bmp', '.gif')):
|
| 95 |
-
return jsonify({"error": "Unsupported file type"}), 400
|
| 96 |
-
|
| 97 |
-
api_temp_folder = os.path.join(os.path.dirname(__file__), 'static', 'api_temp')
|
| 98 |
-
os.makedirs(api_temp_folder, exist_ok=True)
|
| 99 |
-
file_path = os.path.join(api_temp_folder, filename)
|
| 100 |
-
file.save(file_path)
|
| 101 |
-
|
| 102 |
-
try:
|
| 103 |
-
_ = load_img(file_path)
|
| 104 |
-
except Exception as e:
|
| 105 |
-
os.remove(file_path)
|
| 106 |
-
return jsonify({"error": f"Invalid image: {str(e)}"}), 400
|
| 107 |
-
|
| 108 |
-
pred, _ = model_predict(file_path, SoilNet)
|
| 109 |
-
os.remove(file_path)
|
| 110 |
-
|
| 111 |
-
return jsonify({"soil_type": pred})
|
| 112 |
-
|
| 113 |
-
# Start the app
|
| 114 |
-
if __name__ == '__main__':
|
| 115 |
-
app.run(debug=True)
|
| 116 |
-
|
| 117 |
-
app.run(debug=True, threaded=False)
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import tensorflow as tf
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from huggingface_hub import hf_hub_download
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import numpy as np
|
|
|
|
|
|
|
| 6 |
|
| 7 |
# Load model from Hugging Face Hub
|
| 8 |
model_path = hf_hub_download(repo_id="arpitsharrrma/soilnet-model", filename="SoilNet.keras")
|
| 9 |
+
model = tf.keras.models.load_model(model_path)
|
| 10 |
+
|
| 11 |
+
# Define class labels (adjust if needed)
|
| 12 |
+
class_names = ['Alluvial Soil', 'Black Soil', 'Clay Soil', 'Red Soil', 'Sandy Soil']
|
| 13 |
+
|
| 14 |
+
def predict_soil(image):
|
| 15 |
+
image = image.resize((150, 150)) # Model input size
|
| 16 |
+
img_array = np.array(image) / 255.0
|
| 17 |
+
img_array = img_array.reshape(1, 150, 150, 3)
|
| 18 |
+
predictions = model.predict(img_array)
|
| 19 |
+
predicted_class = class_names[np.argmax(predictions)]
|
| 20 |
+
confidence = float(np.max(predictions)) * 100
|
| 21 |
+
return f"{predicted_class} ({confidence:.2f}% confidence)"
|
| 22 |
+
|
| 23 |
+
# Gradio Interface
|
| 24 |
+
interface = gr.Interface(
|
| 25 |
+
fn=predict_soil,
|
| 26 |
+
inputs=gr.Image(type="pil", label="Upload Soil Image"),
|
| 27 |
+
outputs=gr.Textbox(label="Predicted Soil Type"),
|
| 28 |
+
title="SoilNet - Soil Type Classifier",
|
| 29 |
+
description="Upload a soil image and the model will predict the soil type using deep learning."
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
interface.launch()
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|