Spaces:
Sleeping
Sleeping
from langchain_text_splitters import CharacterTextSplitter | |
from langchain_huggingface import HuggingFaceEmbeddings | |
from langchain_chroma import Chroma | |
from langchain.docstore.document import Document | |
import pandas as pd | |
import os | |
import glob | |
# Define a function to perform vectorization for multiple CSV files | |
def vectorize_documents(): | |
embeddings = HuggingFaceEmbeddings() | |
# Directory containing multiple CSV files | |
csv_directory = "Data" # Replace with your folder name | |
csv_files = glob.glob(os.path.join(csv_directory, "*.csv")) # Find all CSV files in the folder | |
documents = [] | |
# Load and concatenate all CSV files | |
for file_path in csv_files: | |
df = pd.read_csv(file_path) | |
for _, row in df.iterrows(): | |
# Combine all columns in the row into a single string | |
row_content = " ".join(row.astype(str)) | |
documents.append(Document(page_content=row_content)) | |
# Splitting the text and creating chunks of these documents | |
text_splitter = CharacterTextSplitter( | |
chunk_size=2000, | |
chunk_overlap=500 | |
) | |
text_chunks = text_splitter.split_documents(documents) | |
# Process text chunks in batches | |
batch_size = 5000 # Chroma's batch size limit is 5461, set a slightly smaller size for safety | |
for i in range(0, len(text_chunks), batch_size): | |
batch = text_chunks[i:i + batch_size] | |
# Store the batch in Chroma vector DB | |
vectordb = Chroma.from_documents( | |
documents=batch, | |
embedding=embeddings, | |
persist_directory="vector_db_dir" | |
) | |
print("Documents Vectorized and saved in VectorDB") | |
# Expose embeddings if needed | |
embeddings = HuggingFaceEmbeddings() | |
# Main guard to prevent execution on import | |
if __name__ == "__main__": | |
vectorize_documents() | |