Update app.py
Browse files
app.py
CHANGED
|
@@ -1,174 +1,96 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import json
|
| 3 |
-
import sqlite3
|
| 4 |
-
from datetime import datetime
|
| 5 |
import streamlit as st
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
from
|
| 9 |
-
|
| 10 |
-
from
|
| 11 |
-
from
|
| 12 |
-
|
| 13 |
-
#
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
# Function to
|
| 37 |
-
def
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
st.
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
#
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
st.subheader(f"Hello {username}, start your query below!")
|
| 102 |
-
|
| 103 |
-
# Language selection for translation
|
| 104 |
-
selected_language = st.selectbox("Select the output language", languages, index=languages.index("English"))
|
| 105 |
-
|
| 106 |
-
# Input options for the user to type or use voice input
|
| 107 |
-
input_option = st.radio("Choose Input Method", ("Type your question",))
|
| 108 |
-
|
| 109 |
-
# Container to hold the chat interface (for scrolling)
|
| 110 |
-
chat_container = st.container()
|
| 111 |
-
|
| 112 |
-
with chat_container:
|
| 113 |
-
if "chat_history" in st.session_state:
|
| 114 |
-
for message in st.session_state.chat_history:
|
| 115 |
-
if message['role'] == 'user':
|
| 116 |
-
with st.chat_message("user"):
|
| 117 |
-
st.markdown(message["content"])
|
| 118 |
-
elif message['role'] == 'assistant':
|
| 119 |
-
with st.chat_message("assistant"):
|
| 120 |
-
st.markdown(message["content"])
|
| 121 |
-
|
| 122 |
-
# User input section for typing
|
| 123 |
-
user_query = None # Initialize user_query as None
|
| 124 |
-
|
| 125 |
-
if input_option == "Type your question":
|
| 126 |
-
user_query = st.chat_input("Ask AI about Bhagavad Gita or Yoga Sutras:") # Chat input for typing
|
| 127 |
-
|
| 128 |
-
# If user input is provided, process the query
|
| 129 |
-
if user_query:
|
| 130 |
-
with st.spinner("Processing your query... Please wait."):
|
| 131 |
-
|
| 132 |
-
# Save user input to chat history in memory
|
| 133 |
-
st.session_state.chat_history.append({"role": "user", "content": user_query})
|
| 134 |
-
|
| 135 |
-
# Display user's message in chatbot (for UI display)
|
| 136 |
-
with st.chat_message("user"):
|
| 137 |
-
st.markdown(user_query)
|
| 138 |
-
|
| 139 |
-
# Get assistant's response from the chain
|
| 140 |
-
with st.chat_message("assistant"):
|
| 141 |
-
response = st.session_state.conversational_chain({"question": user_query})
|
| 142 |
-
assistant_response = response["answer"]
|
| 143 |
-
|
| 144 |
-
# Save assistant's response to chat history in memory
|
| 145 |
-
st.session_state.chat_history.append({"role": "assistant", "content": assistant_response})
|
| 146 |
-
|
| 147 |
-
# Format output in JSON
|
| 148 |
-
formatted_output = {
|
| 149 |
-
"book": "Bhagavad Gita", # or "PYS" for Yoga Sutras
|
| 150 |
-
"chapter_number": "2", # Example, replace with actual value from response
|
| 151 |
-
"verse_number": "47", # Example, replace with actual value from response
|
| 152 |
-
"shloka": "Yoga karmasu kaushalam", # Example, replace with actual shloka from response
|
| 153 |
-
"translation": assistant_response,
|
| 154 |
-
"commentary": "This is a commentary on the shloka.", # Replace with actual commentary
|
| 155 |
-
"summary": "This is a summary of the chapter." # Replace with actual summary
|
| 156 |
-
}
|
| 157 |
-
|
| 158 |
-
# Save the chat history to the database (SQLite)
|
| 159 |
-
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 160 |
-
day = datetime.now().strftime("%A") # Get the day of the week (e.g., Monday)
|
| 161 |
-
save_chat_history(st.session_state.conn, username, timestamp, day, user_query, assistant_response)
|
| 162 |
-
|
| 163 |
-
# Translate the assistant's response based on selected language
|
| 164 |
-
translator = GoogleTranslator(source="en", target=selected_language.lower())
|
| 165 |
-
translated_response = translator.translate(assistant_response)
|
| 166 |
-
|
| 167 |
-
# Display translated response
|
| 168 |
-
st.markdown(f"**Translated Answer ({selected_language}):** {translated_response}")
|
| 169 |
-
|
| 170 |
-
# Display the formatted output
|
| 171 |
-
st.json(formatted_output)
|
| 172 |
-
|
| 173 |
-
# Clear the input field after the query is processed
|
| 174 |
-
st.session_state.user_input = "" # Reset the input field for next use
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import google.generativeai as genai
|
| 3 |
+
import os
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import numpy as np
|
| 6 |
+
from deepface import DeepFace # Replacing FER with DeepFace
|
| 7 |
+
from dotenv import load_dotenv
|
| 8 |
+
|
| 9 |
+
# Print out successful imports
|
| 10 |
+
print("DeepFace is installed and ready to use!")
|
| 11 |
+
print("Google Generative AI module is successfully imported!")
|
| 12 |
+
|
| 13 |
+
# Load API keys and environment variables
|
| 14 |
+
load_dotenv()
|
| 15 |
+
genai.configure(api_key="AIzaSyAEzZLb7R1CNTWwFXoUsWNrV47X9JgGu1o")
|
| 16 |
+
|
| 17 |
+
# gemini function for general content generation
|
| 18 |
+
def get_gemini_response(input):
|
| 19 |
+
try:
|
| 20 |
+
model = genai.GenerativeModel('gemini-pro')
|
| 21 |
+
response = model.generate_content(input)
|
| 22 |
+
return response
|
| 23 |
+
except Exception as e:
|
| 24 |
+
# Handle quota exceeded error
|
| 25 |
+
if "RATE_LIMIT_EXCEEDED" in str(e):
|
| 26 |
+
st.error("Quota exceeded for content generation. Please try again later.")
|
| 27 |
+
return None
|
| 28 |
+
else:
|
| 29 |
+
st.error(f"Error: {e}")
|
| 30 |
+
return None
|
| 31 |
+
|
| 32 |
+
# Function to analyze image for depression and emotion detection using DeepFace
|
| 33 |
+
def detect_emotions(image):
|
| 34 |
+
try:
|
| 35 |
+
# Convert PIL Image to NumPy array
|
| 36 |
+
image_array = np.array(image)
|
| 37 |
+
# Use DeepFace to analyze emotions
|
| 38 |
+
analysis = DeepFace.analyze(image_array, actions=['emotion'], enforce_detection=False)
|
| 39 |
+
# Return the dominant emotion and its score
|
| 40 |
+
return analysis[0]['dominant_emotion'], analysis[0]['emotion']
|
| 41 |
+
except Exception as e:
|
| 42 |
+
st.error(f"Error during emotion detection: {e}")
|
| 43 |
+
return None, None
|
| 44 |
+
|
| 45 |
+
# Function to analyze detected emotions with LLM
|
| 46 |
+
def analyze_emotions_with_llm(emotion, emotions):
|
| 47 |
+
emotion_analysis = f"{emotion}: {emotions[emotion]:.2f}"
|
| 48 |
+
analysis_prompt = f"""
|
| 49 |
+
### As a mental health and emotional well-being expert, analyze the following detected emotions.
|
| 50 |
+
### Detected Emotions:
|
| 51 |
+
{emotion_analysis}
|
| 52 |
+
### Analysis Output:
|
| 53 |
+
1. Identify any potential signs of depression based on the detected emotions.
|
| 54 |
+
"""
|
| 55 |
+
response = get_gemini_response(analysis_prompt)
|
| 56 |
+
return response
|
| 57 |
+
|
| 58 |
+
# Function to parse and display response content
|
| 59 |
+
def display_response_content(response):
|
| 60 |
+
st.subheader("Response Output")
|
| 61 |
+
if response and hasattr(response, 'candidates'):
|
| 62 |
+
response_content = response.candidates[0].content.parts[0].text if response.candidates[0].content.parts else ""
|
| 63 |
+
sections = response_content.split('###')
|
| 64 |
+
for section in sections:
|
| 65 |
+
if section.strip():
|
| 66 |
+
section_lines = section.split('\n')
|
| 67 |
+
section_title = section_lines[0].strip()
|
| 68 |
+
section_body = '\n'.join(line.strip() for line in section_lines[1:] if line.strip())
|
| 69 |
+
if section_title:
|
| 70 |
+
st.markdown(f"**{section_title}**")
|
| 71 |
+
if section_body:
|
| 72 |
+
st.write(section_body)
|
| 73 |
+
else:
|
| 74 |
+
st.write("No response received from the model or quota exceeded.")
|
| 75 |
+
|
| 76 |
+
# Streamlit App
|
| 77 |
+
st.title("AI-Powered Depression and Emotion Detection System")
|
| 78 |
+
st.text("Use the AI system for detecting depression and emotions from images.")
|
| 79 |
+
|
| 80 |
+
# Tabs for different functionalities (only image analysis in this version)
|
| 81 |
+
with st.container():
|
| 82 |
+
st.header("Image Analysis")
|
| 83 |
+
uploaded_file = st.file_uploader("Upload an image for analysis", type=["jpg", "jpeg", "png"], help="Please upload an image file.")
|
| 84 |
+
submit_image = st.button('Analyze Image')
|
| 85 |
+
|
| 86 |
+
if submit_image:
|
| 87 |
+
if uploaded_file is not None:
|
| 88 |
+
image = Image.open(uploaded_file) # Open the uploaded image
|
| 89 |
+
emotion, emotions = detect_emotions(image) # Detect emotions using DeepFace
|
| 90 |
+
if emotion: # If emotions are detected
|
| 91 |
+
response = analyze_emotions_with_llm(emotion, emotions) # Analyze detected emotions with LLM
|
| 92 |
+
display_response_content(response) # Display the analysis response
|
| 93 |
+
else:
|
| 94 |
+
st.write("No emotions detected in the image.") # If no emotion is detected
|
| 95 |
+
else:
|
| 96 |
+
st.write("Please upload an image first.") # Prompt for image upload if none is uploaded
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|