Emotion / app.py
arpita-23's picture
Update app.py
27b9386 verified
import streamlit as st
import google.generativeai as genai
import os
from PIL import Image
import numpy as np
from deepface import DeepFace # Replacing FER with DeepFace
from dotenv import load_dotenv
# Print out successful imports
print("DeepFace is installed and ready to use!")
print("Google Generative AI module is successfully imported!")
# Load API keys and environment variables
load_dotenv()
genai.configure(api_key="AIzaSyAEzZLb7R1CNTWwFXoUsWNrV47X9JgGu1o")
# gemini function for general content generation
def get_gemini_response(input):
try:
model = genai.GenerativeModel('gemini-pro')
response = model.generate_content(input)
return response
except Exception as e:
# Handle quota exceeded error
if "RATE_LIMIT_EXCEEDED" in str(e):
st.error("Quota exceeded for content generation. Please try again later.")
return None
else:
st.error(f"Error: {e}")
return None
# Function to analyze image for depression and emotion detection using DeepFace
def detect_emotions(image):
try:
# Convert PIL Image to NumPy array
image_array = np.array(image)
# Use DeepFace to analyze emotions
analysis = DeepFace.analyze(image_array, actions=['emotion'], enforce_detection=False)
# Return the dominant emotion and its score
return analysis[0]['dominant_emotion'], analysis[0]['emotion']
except Exception as e:
st.error(f"Error during emotion detection: {e}")
return None, None
# Function to analyze detected emotions with LLM
def analyze_emotions_with_llm(emotion, emotions):
emotion_analysis = f"{emotion}: {emotions[emotion]:.2f}"
analysis_prompt = f"""
### As a mental health and emotional well-being expert, analyze the following detected emotions.
### Detected Emotions:
{emotion_analysis}
### Analysis Output:
1. Identify any potential signs of depression based on the detected emotions.
"""
response = get_gemini_response(analysis_prompt)
return response
# Function to parse and display response content
def display_response_content(response):
st.subheader("Response Output")
if response and hasattr(response, 'candidates'):
response_content = response.candidates[0].content.parts[0].text if response.candidates[0].content.parts else ""
sections = response_content.split('###')
for section in sections:
if section.strip():
section_lines = section.split('\n')
section_title = section_lines[0].strip()
section_body = '\n'.join(line.strip() for line in section_lines[1:] if line.strip())
if section_title:
st.markdown(f"**{section_title}**")
if section_body:
st.write(section_body)
else:
st.write("No response received from the model or quota exceeded.")
# Streamlit App
st.title("AI-Powered Depression and Emotion Detection System")
st.text("Use the AI system for detecting depression and emotions from images.")
# Tabs for different functionalities (only image analysis in this version)
with st.container():
st.header("Image Analysis")
uploaded_file = st.file_uploader("Upload an image for analysis", type=["jpg", "jpeg", "png"], help="Please upload an image file.")
submit_image = st.button('Analyze Image')
if submit_image:
if uploaded_file is not None:
image = Image.open(uploaded_file) # Open the uploaded image
emotion, emotions = detect_emotions(image) # Detect emotions using DeepFace
if emotion: # If emotions are detected
response = analyze_emotions_with_llm(emotion, emotions) # Analyze detected emotions with LLM
display_response_content(response) # Display the analysis response
else:
st.write("No emotions detected in the image.") # If no emotion is detected
else:
st.write("Please upload an image first.") #