Spaces:
Sleeping
Sleeping
from transformers import BertTokenizerFast, BertForTokenClassification | |
import gradio as gr | |
from src.legalNER import * | |
ids_to_labels = {0: 'B_ADVO', 1: 'B_ARTV', 2: 'B_CRIA', 3: 'B_DEFN', 4: 'B_JUDG', 5: 'B_JUDP', 6: 'B_PENA', 7: 'B_PROS', 8: 'B_PUNI', 9: 'B_REGI', 10: 'B_TIMV', 11: 'B_VERN', 12: 'I_ADVO', 13: 'I_ARTV', 14: 'I_CRIA', 15: 'I_DEFN', 16: 'I_JUDG', 17: 'I_JUDP', 18: 'I_PENA', 19: 'I_PROS', 20: 'I_PUNI', 21: 'I_REGI', 22: 'I_TIMV', 23: 'I_VERN', 24: 'O'} | |
indolem = 'indolem/indobert-base-uncased' | |
indonlu = 'indobenchmark/indobert-base-p2' | |
model_indolem = BertForTokenClassification.from_pretrained(indolem, num_labels=len(ids_to_labels)) | |
model_indonlu = BertForTokenClassification.from_pretrained(indonlu, num_labels=len(ids_to_labels)) | |
tokenizer_indolem = BertTokenizerFast.from_pretrained(indolem) | |
tokenizer_indonlu = BertTokenizerFast.from_pretrained(indonlu) | |
def text_extraction(text, model, progress=gr.Progress()): | |
if model == 'IndoBERT (IndoLEM)': | |
use_model = model_indolem | |
use_tokenizer = tokenizer_indolem | |
else: | |
use_model = model_indonlu | |
use_tokenizer = tokenizer_indonlu | |
legalner = LegalNER(use_model, use_tokenizer, ids_to_labels, model) | |
entitas = legalner.predict(text) | |
new_text = legalner.tokenizer_decode | |
return {"text": new_text, "entities": entitas} | |
def pdf_extraction(doc, model, progress=gr.Progress()): | |
if model == 'IndoBERT (IndoLEM)': | |
use_model = model_indolem | |
use_tokenizer = tokenizer_indolem | |
else: | |
use_model = model_indonlu | |
use_tokenizer = tokenizer_indonlu | |
legalner = LegalNER(use_model, use_tokenizer, ids_to_labels, model) | |
return legalner.predict(doc) |