Spaces:
Sleeping
Sleeping
import sys | |
sys.path.append("/home/pstar7/Documents/gradio/src") | |
from transformers import BertTokenizerFast | |
from gradio_pdf import PDF | |
from BertModel import * | |
from pdf_predict import * | |
import gradio as gr | |
ids_to_labels = {0: 'B_ADVO', 1: 'B_ARTV', 2: 'B_CRIA', 3: 'B_DEFN', 4: 'B_JUDG', 5: 'B_JUDP', 6: 'B_PENA', 7: 'B_PROS', 8: 'B_PUNI', 9: 'B_REGI', 10: 'B_TIMV', 11: 'B_VERN', 12: 'I_ADVO', 13: 'I_ARTV', 14: 'I_CRIA', 15: 'I_DEFN', 16: 'I_JUDG', 17: 'I_JUDP', 18: 'I_PENA', 19: 'I_PROS', 20: 'I_PUNI', 21: 'I_REGI', 22: 'I_TIMV', 23: 'I_VERN', 24: 'O'} | |
indolem = 'indolem/indobert-base-uncased' | |
indonlu = 'indobenchmark/indobert-base-p2' | |
model_indolem = BertModel(indolem, len(ids_to_labels)) | |
model_indonlu = BertModel(indonlu, len(ids_to_labels)) | |
tokenizer_indolem = BertTokenizerFast.from_pretrained(indolem) | |
tokenizer_indonlu = BertTokenizerFast.from_pretrained(indonlu) | |
def predict(doc : str, model : str) -> str: | |
if model == 'IndoBERT (IndoLEM)': | |
use_model = model_indolem | |
use_tokenizer = tokenizer_indolem | |
else: | |
use_model = model_indonlu | |
use_tokenizer = tokenizer_indonlu | |
result = pdf_predict(use_model, use_tokenizer, doc, ids_to_labels, model) | |
return result | |
iface = gr.Interface( | |
fn=predict, | |
inputs=[PDF(label="Document"), | |
gr.Dropdown(['IndoBERT (IndoLEM)', 'IndoBERT (IndoNLU)'], label='Model', info='Pilih Model yang ingin digunakan *Default : IndoBERT (IndoLEM)')], | |
outputs="textbox", | |
title="Legal NER", | |
description="Upload File PDF Putusan Pidana", | |
allow_flagging='never' | |
) | |
if __name__ == "__main__": | |
iface.launch() |