Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import numpy as np | |
| import numpy.linalg as la | |
| import pickle | |
| import os | |
| import gdown | |
| from sentence_transformers import SentenceTransformer | |
| import matplotlib.pyplot as plt | |
| import math | |
| # Compute Cosine Similarity | |
| def cosine_similarity(x, y): | |
| """ | |
| Exponentiated cosine similarity | |
| 1. Compute cosine similarity | |
| 2. Exponentiate cosine similarity | |
| 3. Return exponentiated cosine similarity | |
| (20 pts) | |
| """ | |
| ################################## | |
| ### TODO: Add code here ########## | |
| ################################## | |
| return np.exp(np.dot(x,y)/(np.linalg.norm(x)*np.linalg.norm(y))) | |
| # Function to Load Glove Embeddings | |
| def load_glove_embeddings(glove_path="Data/embeddings.pkl"): | |
| with open(glove_path, "rb") as f: | |
| embeddings_dict = pickle.load(f, encoding="latin1") | |
| return embeddings_dict | |
| def get_model_id_gdrive(model_type): | |
| if model_type == "25d": | |
| word_index_id = "13qMXs3-oB9C6kfSRMwbAtzda9xuAUtt8" | |
| embeddings_id = "1-RXcfBvWyE-Av3ZHLcyJVsps0RYRRr_2" | |
| elif model_type == "50d": | |
| embeddings_id = "1DBaVpJsitQ1qxtUvV1Kz7ThDc3az16kZ" | |
| word_index_id = "1rB4ksHyHZ9skes-fJHMa2Z8J1Qa7awQ9" | |
| elif model_type == "100d": | |
| word_index_id = "1-oWV0LqG3fmrozRZ7WB1jzeTJHRUI3mq" | |
| embeddings_id = "1SRHfX130_6Znz7zbdfqboKosz-PfNvNp" | |
| return word_index_id, embeddings_id | |
| def download_glove_embeddings_gdrive(model_type): | |
| # Get glove embeddings from google drive | |
| word_index_id, embeddings_id = get_model_id_gdrive(model_type) | |
| # Use gdown to get files from google drive | |
| embeddings_temp = "embeddings_" + str(model_type) + "_temp.npy" | |
| word_index_temp = "word_index_dict_" + str(model_type) + "_temp.pkl" | |
| # Download word_index pickle file | |
| print("Downloading word index dictionary....\n") | |
| gdown.download(id=word_index_id, output=word_index_temp, quiet=False) | |
| # Download embeddings numpy file | |
| print("Donwloading embedings...\n\n") | |
| gdown.download(id=embeddings_id, output=embeddings_temp, quiet=False) | |
| # @st.cache_data() | |
| def load_glove_embeddings_gdrive(model_type): | |
| word_index_temp = "word_index_dict_" + str(model_type) + "_temp.pkl" | |
| embeddings_temp = "embeddings_" + str(model_type) + "_temp.npy" | |
| # Load word index dictionary | |
| word_index_dict = pickle.load(open(word_index_temp, "rb"), encoding="latin") | |
| # Load embeddings numpy | |
| embeddings = np.load(embeddings_temp) | |
| return word_index_dict, embeddings | |
| def load_sentence_transformer_model(model_name): | |
| sentenceTransformer = SentenceTransformer(model_name) | |
| return sentenceTransformer | |
| def get_sentence_transformer_embeddings(sentence, model_name="all-MiniLM-L6-v2"): | |
| """ | |
| Get sentence transformer embeddings for a sentence | |
| """ | |
| # 384 dimensional embedding | |
| # Default model: https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2 | |
| sentenceTransformer = load_sentence_transformer_model(model_name) | |
| try: | |
| return sentenceTransformer.encode(sentence) | |
| except: | |
| if model_name == "all-MiniLM-L6-v2": | |
| return np.zeros(384) | |
| else: | |
| return np.zeros(512) | |
| def get_glove_embeddings(word, word_index_dict, embeddings, model_type): | |
| """ | |
| Get glove embedding for a single word | |
| """ | |
| if word.lower() in word_index_dict: | |
| return embeddings[word_index_dict[word.lower()]] | |
| else: | |
| return np.zeros(int(model_type.split("d")[0])) | |
| def averaged_glove_embeddings_gdrive(sentence, word_index_dict, embeddings, model_type=50): | |
| """ | |
| Get averaged glove embeddings for a sentence | |
| 1. Split sentence into words | |
| 2. Get embeddings for each word | |
| 3. Add embeddings for each word | |
| 4. Divide by number of words | |
| 5. Return averaged embeddings | |
| (30 pts) | |
| """ | |
| embedding = np.zeros(int(model_type.split("d")[0])) | |
| ################################## | |
| ##### TODO: Add code here ######## | |
| ################################## | |
| words = [word.strip('.,?!').lower() for word in sentence.split()] | |
| total = 0 | |
| for w in words: | |
| if w in word_index_dict: | |
| embedding += embeddings[word_index_dict[w]] | |
| total +=1 | |
| if total != 0: | |
| embedding = embedding/total | |
| return embedding | |
| def get_category_embeddings(embeddings_metadata): | |
| """ | |
| Get embeddings for each category | |
| 1. Split categories into words | |
| 2. Get embeddings for each word | |
| """ | |
| model_name = embeddings_metadata["model_name"] | |
| st.session_state["cat_embed_" + model_name] = {} | |
| for category in st.session_state.categories.split(" "): | |
| if model_name: | |
| if not category in st.session_state["cat_embed_" + model_name]: | |
| st.session_state["cat_embed_" + model_name][category] = get_sentence_transformer_embeddings(category, model_name=model_name) | |
| else: | |
| if not category in st.session_state["cat_embed_" + model_name]: | |
| st.session_state["cat_embed_" + model_name][category] = get_sentence_transformer_embeddings(category) | |
| def update_category_embeddings(embedings_metadata): | |
| """ | |
| Update embeddings for each category | |
| """ | |
| get_category_embeddings(embeddings_metadata) | |
| def get_sorted_cosine_similarity(embeddings_metadata): | |
| """ | |
| Get sorted cosine similarity between input sentence and categories | |
| Steps: | |
| 1. Get embeddings for input sentence | |
| 2. Get embeddings for categories (if not found, update category embeddings) | |
| 3. Compute cosine similarity between input sentence and categories | |
| 4. Sort cosine similarity | |
| 5. Return sorted cosine similarity | |
| (50 pts) | |
| """ | |
| categories = st.session_state.categories.split(" ") | |
| cosine_sim = {} | |
| if embeddings_metadata["embedding_model"] == "glove": | |
| word_index_dict = embeddings_metadata["word_index_dict"] | |
| embeddings = embeddings_metadata["embeddings"] | |
| model_type = embeddings_metadata["model_type"] | |
| input_embedding = averaged_glove_embeddings_gdrive(st.session_state.text_search, | |
| word_index_dict, | |
| embeddings, model_type) | |
| ########################################## | |
| ## TODO: Get embeddings for categories ### | |
| ########################################## | |
| category_embeddings = [] | |
| for cat in categories: | |
| category_embeddings.append(get_glove_embeddings(cat, word_index_dict, embeddings, model_type)) | |
| else: | |
| model_name = embeddings_metadata["model_name"] | |
| if not "cat_embed_" + model_name in st.session_state: | |
| get_category_embeddings(embeddings_metadata) | |
| category_embeddings = st.session_state["cat_embed_" + model_name] | |
| print("text_search = ", st.session_state.text_search) | |
| if model_name: | |
| input_embedding = get_sentence_transformer_embeddings(st.session_state.text_search, model_name=model_name) | |
| else: | |
| input_embedding = get_sentence_transformer_embeddings(st.session_state.text_search) | |
| cat_scores = [] | |
| for index in range(len(categories)): | |
| ########################################## | |
| # TODO: Compute cosine similarity between input sentence and categories | |
| # TODO: Update category embeddings if category not found | |
| ########################################## | |
| cat_embed = category_embeddings[index] | |
| cat = categories[index] | |
| # Calc cosine sim | |
| cat_scores.append((cat, np.dot(input_embedding,cat_embed))) | |
| # Store doc_id and score as a tuple | |
| sorted_list = sorted(cat_scores, key=lambda x: x[1]) | |
| sorted_cats = [element[0] for element in sorted_list] | |
| #flip sorting order | |
| sorted_cats = sorted_cats[::-1] | |
| # Add list to Map | |
| for cat_pair in sorted_cats: | |
| cosine_sim[cat_pair[0]] = cat_pair[1] | |
| return cosine_sim | |
| def plot_piechart(sorted_cosine_scores_items): | |
| sorted_cosine_scores = np.array([ | |
| sorted_cosine_scores_items[index][1] | |
| for index in range(len(sorted_cosine_scores_items)) | |
| ] | |
| ) | |
| categories = st.session_state.categories.split(" ") | |
| categories_sorted = [ | |
| categories[sorted_cosine_scores_items[index][0]] | |
| for index in range(len(sorted_cosine_scores_items)) | |
| ] | |
| fig, ax = plt.subplots() | |
| ax.pie(sorted_cosine_scores, labels=categories_sorted, autopct="%1.1f%%") | |
| st.pyplot(fig) # Figure | |
| def plot_piechart_helper(sorted_cosine_scores_items): | |
| sorted_cosine_scores = np.array( | |
| [ | |
| sorted_cosine_scores_items[index][1] | |
| for index in range(len(sorted_cosine_scores_items)) | |
| ] | |
| ) | |
| categories = st.session_state.categories.split(" ") | |
| categories_sorted = [ | |
| categories[sorted_cosine_scores_items[index][0]] | |
| for index in range(len(sorted_cosine_scores_items)) | |
| ] | |
| fig, ax = plt.subplots(figsize=(3, 3)) | |
| my_explode = np.zeros(len(categories_sorted)) | |
| my_explode[0] = 0.2 | |
| if len(categories_sorted) == 3: | |
| my_explode[1] = 0.1 # explode this by 0.2 | |
| elif len(categories_sorted) > 3: | |
| my_explode[2] = 0.05 | |
| ax.pie( | |
| sorted_cosine_scores, | |
| labels=categories_sorted, | |
| autopct="%1.1f%%", | |
| explode=my_explode, | |
| ) | |
| return fig | |
| def plot_piecharts(sorted_cosine_scores_models): | |
| scores_list = [] | |
| categories = st.session_state.categories.split(" ") | |
| index = 0 | |
| for model in sorted_cosine_scores_models: | |
| scores_list.append(sorted_cosine_scores_models[model]) | |
| # scores_list[index] = np.array([scores_list[index][ind2][1] for ind2 in range(len(scores_list[index]))]) | |
| index += 1 | |
| if len(sorted_cosine_scores_models) == 2: | |
| fig, (ax1, ax2) = plt.subplots(2) | |
| categories_sorted = [ | |
| categories[scores_list[0][index][0]] for index in range(len(scores_list[0])) | |
| ] | |
| sorted_scores = np.array( | |
| [scores_list[0][index][1] for index in range(len(scores_list[0]))] | |
| ) | |
| ax1.pie(sorted_scores, labels=categories_sorted, autopct="%1.1f%%") | |
| categories_sorted = [ | |
| categories[scores_list[1][index][0]] for index in range(len(scores_list[1])) | |
| ] | |
| sorted_scores = np.array( | |
| [scores_list[1][index][1] for index in range(len(scores_list[1]))] | |
| ) | |
| ax2.pie(sorted_scores, labels=categories_sorted, autopct="%1.1f%%") | |
| st.pyplot(fig) | |
| def plot_alatirchart(sorted_cosine_scores_models): | |
| models = list(sorted_cosine_scores_models.keys()) | |
| tabs = st.tabs(models) | |
| figs = {} | |
| for model in models: | |
| figs[model] = plot_piechart_helper(sorted_cosine_scores_models[model]) | |
| for index in range(len(tabs)): | |
| with tabs[index]: | |
| st.pyplot(figs[models[index]]) | |
| ### Text Search ### | |
| st.sidebar.title("GloVe Twitter") | |
| st.sidebar.markdown( | |
| """ | |
| GloVe is an unsupervised learning algorithm for obtaining vector representations for words. Pretrained on | |
| 2 billion tweets with vocabulary size of 1.2 million. Download from [Stanford NLP](http://nlp.stanford.edu/data/glove.twitter.27B.zip). | |
| Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. *GloVe: Global Vectors for Word Representation*. | |
| """ | |
| ) | |
| model_type = st.sidebar.selectbox("Choose the model", ("25d", "50d"), index=1) | |
| st.title("Search Based Retrieval Demo") | |
| st.subheader( | |
| "Pass in space separated categories you want this search demo to be about." | |
| ) | |
| # st.selectbox(label="Pick the categories you want this search demo to be about...", | |
| # options=("Flowers Colors Cars Weather Food", "Chocolate Milk", "Anger Joy Sad Frustration Worry Happiness", "Positive Negative"), | |
| # key="categories" | |
| # ) | |
| st.text_input( | |
| label="Categories", key="categories", value="Flowers Colors Cars Weather Food" | |
| ) | |
| print(st.session_state["categories"]) | |
| print(type(st.session_state["categories"])) | |
| # print("Categories = ", categories) | |
| # st.session_state.categories = categories | |
| st.subheader("Pass in an input word or even a sentence") | |
| text_search = st.text_input( | |
| label="Input your sentence", | |
| key="text_search", | |
| value="Roses are red, trucks are blue, and Seattle is grey right now", | |
| ) | |
| # st.session_state.text_search = text_search | |
| # Download glove embeddings if it doesn't exist | |
| embeddings_path = "embeddings_" + str(model_type) + "_temp.npy" | |
| word_index_dict_path = "word_index_dict_" + str(model_type) + "_temp.pkl" | |
| if not os.path.isfile(embeddings_path) or not os.path.isfile(word_index_dict_path): | |
| print("Model type = ", model_type) | |
| glove_path = "Data/glove_" + str(model_type) + ".pkl" | |
| print("glove_path = ", glove_path) | |
| # Download embeddings from google drive | |
| with st.spinner("Downloading glove embeddings..."): | |
| download_glove_embeddings_gdrive(model_type) | |
| # Load glove embeddings | |
| word_index_dict, embeddings = load_glove_embeddings_gdrive(model_type) | |
| # Find closest word to an input word | |
| if st.session_state.text_search: | |
| # Glove embeddings | |
| print("Glove Embedding") | |
| embeddings_metadata = { | |
| "embedding_model": "glove", | |
| "word_index_dict": word_index_dict, | |
| "embeddings": embeddings, | |
| "model_type": model_type, | |
| } | |
| with st.spinner("Obtaining Cosine similarity for Glove..."): | |
| sorted_cosine_sim_glove = get_sorted_cosine_similarity( | |
| # st.session_state.text_search, | |
| embeddings_metadata | |
| ) | |
| # Sentence transformer embeddings | |
| print("Sentence Transformer Embedding") | |
| embeddings_metadata = {"embedding_model": "transformers", "model_name": ""} | |
| with st.spinner("Obtaining Cosine similarity for 384d sentence transformer..."): | |
| sorted_cosine_sim_transformer = get_sorted_cosine_similarity( | |
| # st.session_state.text_search, | |
| embeddings_metadata | |
| ) | |
| # Results and Plot Pie Chart for Glove | |
| print("Categories are: ", st.session_state.categories) | |
| st.subheader( | |
| "Closest word I have between: " | |
| + st.session_state.categories | |
| + " as per different Embeddings" | |
| ) | |
| print(sorted_cosine_sim_glove) | |
| print(sorted_cosine_sim_transformer) | |
| # print(sorted_distilbert) | |
| # Altair Chart for all models | |
| plot_alatirchart( | |
| { | |
| "glove_" + str(model_type): sorted_cosine_sim_glove, | |
| "sentence_transformer_384": sorted_cosine_sim_transformer, | |
| } | |
| ) | |
| # "distilbert_512": sorted_distilbert}) | |
| st.write("") | |
| st.write( | |
| "Demo developed by [Dr. Karthik Mohan](https://www.linkedin.com/in/karthik-mohan-72a4b323/)" | |
| ) | |