|
import gradio as gr |
|
import os |
|
import whisper |
|
import cv2 |
|
import io |
|
from PIL import Image |
|
import json |
|
import tempfile |
|
import torch |
|
import transformers |
|
import re |
|
import time |
|
from torch import cuda, bfloat16 |
|
from moviepy.editor import VideoFileClip |
|
from image_caption import Caption |
|
from pathlib import Path |
|
from langchain import PromptTemplate |
|
from langchain import LLMChain |
|
from langchain.llms import HuggingFacePipeline |
|
from difflib import SequenceMatcher |
|
import argparse |
|
import shutil |
|
import google.generativeai as genai |
|
|
|
class VideoClassifier: |
|
def __init__(self, no_of_frames, mode='interface'): |
|
self.no_of_frames = no_of_frames |
|
self.mode = mode |
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" |
|
|
|
self.setup_paths() |
|
self.setup_gemini_model() |
|
|
|
def setup_paths(self): |
|
self.path = './results' |
|
if os.path.exists(self.path): |
|
shutil.rmtree(self.path) |
|
os.mkdir(self.path) |
|
|
|
def setup_gemini_model(self): |
|
self.genai = genai |
|
self.genai.configure(api_key="AIzaSyAFG94rVbm9eWepO5uPGsMha8XJ-sHbMdA") |
|
self.genai_model = genai.GenerativeModel('gemini-pro') |
|
self.whisper_model = whisper.load_model("base") |
|
self.img_cap = Caption() |
|
|
|
def setup_model(self): |
|
self.model_id = "mistralai/Mistral-7B-Instruct-v0.2" |
|
self.device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu' |
|
self.device_name = torch.cuda.get_device_name() |
|
|
|
bnb_config = transformers.BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_quant_type='nf4', |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_compute_dtype=bfloat16 |
|
) |
|
hf_auth = hf_key |
|
model_config = transformers.AutoConfig.from_pretrained( |
|
self.model_id, |
|
use_auth_token=hf_auth |
|
) |
|
self.model = transformers.AutoModelForCausalLM.from_pretrained( |
|
self.model_id, |
|
trust_remote_code=True, |
|
config=model_config, |
|
quantization_config=bnb_config, |
|
device_map='auto', |
|
use_auth_token=hf_auth |
|
) |
|
self.model.eval() |
|
self.tokenizer = transformers.AutoTokenizer.from_pretrained( |
|
self.model_id, |
|
use_auth_token=hf_auth |
|
) |
|
self.generate_text = transformers.pipeline( |
|
model=self.model, tokenizer=self.tokenizer, |
|
return_full_text=True, |
|
task='text-generation', |
|
temperature=0.01, |
|
max_new_tokens=32 |
|
) |
|
self.whisper_model = whisper.load_model("base") |
|
self.img_cap = Caption() |
|
self.llm = HuggingFacePipeline(pipeline=self.generate_text) |
|
|
|
def classify_video(self, video_input): |
|
print(f"Processing video: {video_input} with {self.no_of_frames} frames.") |
|
start = time.time() |
|
mp4_file = video_input |
|
video_name = mp4_file.split("/")[-1] |
|
wav_file = "results/audiotrack.wav" |
|
video_clip = VideoFileClip(mp4_file) |
|
audioclip = video_clip.audio |
|
wav_file = audioclip.write_audiofile(wav_file) |
|
audioclip.close() |
|
video_clip.close() |
|
audiotrack = "results/audiotrack.wav" |
|
result = self.whisper_model.transcribe(audiotrack, fp16=False) |
|
transcript = result["text"] |
|
print("TRANSCRIPT",transcript) |
|
|
|
end = time.time() |
|
time_taken_1 = round(end - start, 3) |
|
|
|
|
|
video = cv2.VideoCapture(video_input) |
|
length = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) |
|
no_of_frame = int(self.no_of_frames) |
|
temp_div = length // no_of_frame |
|
currentframe = 50 |
|
caption_text = [] |
|
|
|
for i in range(no_of_frame): |
|
video.set(cv2.CAP_PROP_POS_FRAMES, currentframe) |
|
ret, frame = video.read() |
|
if ret: |
|
|
|
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
image = Image.fromarray(frame) |
|
|
|
|
|
|
|
|
|
content = self.img_cap.predict_image_caption_gemini(image) |
|
print("content", content) |
|
caption_text.append(content[0]) |
|
currentframe += temp_div - 1 |
|
else: |
|
break |
|
|
|
captions = ", ".join(caption_text) |
|
print("CAPTIONS", captions) |
|
video.release() |
|
cv2.destroyAllWindows() |
|
|
|
main_categories = Path("main_classes.txt").read_text() |
|
main_categories_list = ['Automotive', 'Books and Literature', 'Business and Finance', 'Careers', 'Education','Family and Relationships', |
|
'Fine Art', 'Food & Drink', 'Healthy Living', 'Hobbies & Interests', 'Home & Garden','Medical Health', 'Movies', 'Music and Audio', |
|
'News and Politics', 'Personal Finance', 'Pets', 'Pop Culture','Real Estate', 'Religion & Spirituality', 'Science', 'Shopping', 'Sports', |
|
'Style & Fashion','Technology & Computing', 'Television', 'Travel', 'Video Gaming'] |
|
|
|
|
|
template1 = '''Given below are the different type of main video classes |
|
{main_categories} |
|
You are a text classifier that catergorises the transcript and captions into one main class whose context match with one main class and only generate main class name no need of sub classe or explanation. |
|
Give more importance to Transcript while classifying . |
|
Transcript: {transcript} |
|
Captions: {captions} |
|
Return only the answer chosen from list and nothing else |
|
Main-class => ''' |
|
|
|
prompt1 = PromptTemplate(template=template1, input_variables=['main_categories', 'transcript', 'captions']) |
|
print("PROMPT 1",prompt1) |
|
prompt_text = template1.format(main_categories=main_categories, transcript=transcript, captions=captions) |
|
|
|
response = self.genai_model.generate_content(contents=prompt_text) |
|
main_class = response.text |
|
|
|
print(main_class) |
|
print("#######################################################") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def category_class(class_name,categories_list): |
|
def similar(str1, str2): |
|
return SequenceMatcher(None, str1, str2).ratio() |
|
index_no = 0 |
|
sim = 0 |
|
for sub in categories_list: |
|
res = similar(class_name, sub) |
|
if res>sim: |
|
sim = res |
|
index_no = categories_list.index(sub) |
|
class_name = categories_list[index_no] |
|
return class_name |
|
|
|
if main_class not in main_categories_list: |
|
main_class = category_class(main_class,main_categories_list) |
|
print("POST PROCESSED MAIN CLASS : ",main_class) |
|
tier_1_index_no = main_categories_list.index(main_class) + 1 |
|
|
|
with open('categories_json.txt') as f: |
|
data = json.load(f) |
|
sub_categories_list = data[main_class] |
|
print("SUB CATEGORIES LIST",sub_categories_list) |
|
with open("sub_categories.txt", "w") as f: |
|
no = 1 |
|
|
|
|
|
for i in data[main_class]: |
|
f.write(str(no)+')'+str(i) + '\n') |
|
no = no+1 |
|
sub_categories = Path("sub_categories.txt").read_text() |
|
|
|
template2 = '''Given below are the sub classes of {main_class}. |
|
{sub_categories} |
|
You are a text classifier that catergorises the transcript and captions into one sub class whose context match with one sub class and only generate sub class name, Don't give explanation . |
|
Give more importance to Transcript while classifying . |
|
Transcript: {transcript} |
|
Captions: {captions} |
|
Return only the Sub-class answer chosen from list and nothing else |
|
Answer in the format: |
|
Main-class => {main_class} |
|
Sub-class => |
|
''' |
|
|
|
prompt2 = PromptTemplate(template=template2, input_variables=['sub_categories', 'transcript', 'captions','main_class']) |
|
prompt_text2 = template1.format(main_categories=main_categories, transcript=transcript, captions=captions) |
|
response = self.genai_model.generate_content(contents=prompt_text2) |
|
sub_class = response.text |
|
print("Preprocess Answer",sub_class) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if sub_class not in sub_categories_list: |
|
sub_class = category_class(sub_class,sub_categories_list) |
|
print("POST PROCESSED SUB CLASS",sub_class) |
|
tier_2_index_no = sub_categories_list.index(sub_class) + 1 |
|
print("ANSWER:",sub_class) |
|
final_answer = (f"Tier 1 category : IAB{tier_1_index_no} : {main_class}\nTier 2 category : IAB{tier_1_index_no}-{tier_2_index_no} : {sub_class}") |
|
|
|
first_video = os.path.join(os.path.dirname(__file__), "American_football_heads_to_India_clip.mp4") |
|
second_video = os.path.join(os.path.dirname(__file__), "PersonalFinance_clip.mp4") |
|
|
|
|
|
return final_answer |
|
|
|
def launch_interface(self): |
|
css_code = """ |
|
.gradio-container {background-color: #000000;color:#FFFFFF;background-size: 200px; background-image:url(https://gitlab.ignitarium.in/saran/logo/-/raw/aab7c77b4816b8a4bbdc5588eb57ce8b6c15c72d/ign_logo_white.png);background-repeat:no-repeat; position:relative; top:1px; left:5px; padding: 50px;text-align: right;background-position: right top;} |
|
.gradio-container-4-1-2 .prose h1 {color:#FFFFFF !important } |
|
.body {background-color: #000000 !important} |
|
@media screen and (max-width: 1500px) { |
|
.gradio-container-4-1-2 .prose h1 {color:#FFFFFF !important; margin-top: 6%} |
|
} |
|
.built-with svelte-mpyp5e {visibility:hidden} |
|
.show-api svelte-mpyp5e {visibility:hidden} |
|
""" |
|
css_code += """ |
|
:root { |
|
--body-background-fill: #000000; /* New value */ |
|
} |
|
""" |
|
|
|
demo = gr.Interface(fn=self.classify_video, inputs="playablevideo",allow_flagging='never', examples=[ |
|
os.path.join(os.path.dirname(__file__), |
|
"American_football_heads_to_India_clip.mp4"),os.path.join(os.path.dirname(__file__), "PersonalFinance_clip.mp4"), |
|
os.path.join(os.path.dirname(__file__), "Motorcycle_clip.mp4"), |
|
os.path.join(os.path.dirname(__file__), "Spirituality_1_clip.mp4"), |
|
os.path.join(os.path.dirname(__file__), "Science_clip.mp4")], |
|
cache_examples=False, |
|
|
|
outputs=["text"], |
|
css=css_code, |
|
title="Interactive Advertising Bureau (IAB) compliant Video-Ad classification" |
|
) |
|
demo.launch(debug=True) |
|
|
|
|
|
def run_inference(self, video_path): |
|
result = self.classify_video(video_path) |
|
print(result) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
vc = VideoClassifier(no_of_frames=3, mode='interface') |
|
vc.launch_interface() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|