Spaces:
Sleeping
Sleeping
File size: 4,965 Bytes
a15fa3d 1b4017a a15fa3d 6c0de32 1b9a999 a2b5272 00403f8 79ce31f bac4aa5 6c0de32 00403f8 79ce31f 6c0de32 00403f8 6c0de32 1b9a999 6c0de32 00403f8 1b9a999 79ce31f 6c0de32 1b9a999 6c0de32 1b9a999 79ce31f 00403f8 1b9a999 00403f8 1b9a999 a15fa3d 1b9a999 a15fa3d 1b9a999 6c0de32 1b9a999 56f0319 1b9a999 56f0319 26ab425 56f0319 74342e2 1b9a999 a15fa3d 1b9a999 6c0de32 00403f8 1b9a999 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # Disable GPU and enforce CPU execution
import gradio as gr
import numpy as np
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.sequence import pad_sequences
import pickle
import re
# Load models
gru_model = load_model("best_GRU_tuning_model.h5")
lstm_model = load_model("LSTM_model.h5")
bilstm_model = load_model("BiLSTM_model.h5")
# Load tokenizer
with open("my_tokenizer.pkl", "rb") as f:
tokenizer = pickle.load(f)
def preprocess_text(text):
text = text.lower()
text = re.sub(r"[^a-zA-Z\s]", "", text).strip()
return text
def predict_with_gru(text):
cleaned = preprocess_text(text)
seq = tokenizer.texts_to_sequences([cleaned])
padded_seq = pad_sequences(seq, maxlen=200)
probs = gru_model.predict(padded_seq)
predicted_class = np.argmax(probs, axis=1)[0]
return int(predicted_class + 1)
def predict_with_lstm(text):
cleaned = preprocess_text(text)
seq = tokenizer.texts_to_sequences([cleaned])
padded_seq = pad_sequences(seq, maxlen=200)
probs = lstm_model.predict(padded_seq)
predicted_class = np.argmax(probs, axis=1)[0]
return int(predicted_class + 1)
def predict_with_bilstm(text):
cleaned = preprocess_text(text)
seq = tokenizer.texts_to_sequences([cleaned])
padded_seq = pad_sequences(seq, maxlen=200)
probs = bilstm_model.predict(padded_seq)
predicted_class = np.argmax(probs, axis=1)[0]
return int(predicted_class + 1)
# Unified function for sentiment analysis and statistics
def analyze_sentiment_and_statistics(text):
results = {
"GRU Model": predict_with_gru(text),
"LSTM Model": predict_with_lstm(text),
"BiLSTM Model": predict_with_bilstm(text),
}
# Calculate statistics
scores = list(results.values())
min_score = min(scores)
max_score = max(scores)
min_score_models = [model for model, score in results.items() if score == min_score]
max_score_models = [model for model, score in results.items() if score == max_score]
average_score = np.mean(scores)
if all(score == scores[0] for score in scores):
statistics = {
"Message": "All models predict the same score.",
"Average Score": f"{average_score:.2f}",
}
else:
statistics = {
"Lowest Score": f"{min_score} (Models: {', '.join(min_score_models)})",
"Highest Score": f"{max_score} (Models: {', '.join(max_score_models)})",
"Average Score": f"{average_score:.2f}",
}
return results, statistics
# Gradio Interface
with gr.Blocks(css=".gradio-container { max-width: 900px; margin: auto; padding: 20px; }") as demo:
gr.Markdown("# RNN Sentiment Analysis")
gr.Markdown(
"Predict the sentiment of your text review using RNN-based models."
)
# Text input box
with gr.Row():
text_input = gr.Textbox(
label="Enter your text here:",
lines=3,
placeholder="Type your review here..."
)
# Prediction and statistics boxes
with gr.Row():
with gr.Column():
gru_output = gr.Textbox(label="Predicted Sentiment (GRU Model)", interactive=False)
lstm_output = gr.Textbox(label="Predicted Sentiment (LSTM Model)", interactive=False)
bilstm_output = gr.Textbox(label="Predicted Sentiment (BiLSTM Model)", interactive=False)
with gr.Column():
statistics_output = gr.Textbox(label="Statistics (Lowest, Highest, Average)", interactive=False)
# Buttons placed together in a row (second line)
with gr.Row():
analyze_button = gr.Button("Analyze Sentiment", variant="primary") # Blue button
clear_button = gr.ClearButton([text_input, gru_output, lstm_output, bilstm_output, statistics_output]) # Clear button
# Button to analyze sentiment and show statistics
def process_input_and_analyze(text_input):
results, statistics = analyze_sentiment_and_statistics(text_input)
if "Message" in statistics:
return (
f"{results['GRU Model']}",
f"{results['LSTM Model']}",
f"{results['BiLSTM Model']}",
f"Statistics:\n{statistics['Message']}\nAverage Score: {statistics['Average Score']}"
)
else:
return (
f"{results['GRU Model']}",
f"{results['LSTM Model']}",
f"{results['BiLSTM Model']}",
f"Statistics:\n{statistics['Lowest Score']}\n{statistics['Highest Score']}\nAverage Score: {statistics['Average Score']}"
)
analyze_button.click(
process_input_and_analyze,
inputs=[text_input],
outputs=[
gru_output,
lstm_output,
bilstm_output,
statistics_output
]
)
demo.launch() |