Spaces:
Sleeping
Sleeping
new family model
Browse files
app.py
CHANGED
@@ -20,20 +20,18 @@ import zipfile
|
|
20 |
import os
|
21 |
|
22 |
# Load the model from the file
|
23 |
-
with open('family_labels.pkl', 'rb') as filefam:
|
24 |
yfam = pickle.load(filefam)
|
25 |
|
26 |
tokenizerfam = AutoTokenizer.from_pretrained("facebook/esm2_t12_35M_UR50D") #facebook/esm2_t33_650M_UR50D
|
27 |
-
|
28 |
-
|
29 |
-
labelsfam = torch.tensor(encoded_labelsfam)
|
30 |
-
device = 'cpu'
|
31 |
device
|
32 |
|
33 |
-
modelfam = EsmForSequenceClassification.from_pretrained("facebook/esm2_t12_35M_UR50D", num_labels=len(
|
34 |
modelfam = modelfam.to('cpu')
|
35 |
|
36 |
-
modelfam.load_state_dict(torch.load("family.pth"
|
37 |
modelfam.eval()
|
38 |
|
39 |
x_testfam = ["""MAEVLRTLAGKPKCHALRPMILFLIMLVLVLFGYGVLSPRSLMPGSLERGFCMAVREPDH
|
@@ -55,7 +53,7 @@ with torch.no_grad():
|
|
55 |
_, predicted_labelsfam = torch.max(logitsfam, dim=1)
|
56 |
probabilitiesfam[0]
|
57 |
|
58 |
-
decoded_labelsfam =
|
59 |
decoded_labelsfam
|
60 |
|
61 |
|
|
|
20 |
import os
|
21 |
|
22 |
# Load the model from the file
|
23 |
+
with open('/home/aarya/Documents/paper3/family_labels.pkl', 'rb') as filefam:
|
24 |
yfam = pickle.load(filefam)
|
25 |
|
26 |
tokenizerfam = AutoTokenizer.from_pretrained("facebook/esm2_t12_35M_UR50D") #facebook/esm2_t33_650M_UR50D
|
27 |
+
|
28 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
|
29 |
device
|
30 |
|
31 |
+
modelfam = EsmForSequenceClassification.from_pretrained("facebook/esm2_t12_35M_UR50D", num_labels=len(yfam.classes_))
|
32 |
modelfam = modelfam.to('cpu')
|
33 |
|
34 |
+
modelfam.load_state_dict(torch.load("/home/aarya/Documents/paper3/family.pth"))
|
35 |
modelfam.eval()
|
36 |
|
37 |
x_testfam = ["""MAEVLRTLAGKPKCHALRPMILFLIMLVLVLFGYGVLSPRSLMPGSLERGFCMAVREPDH
|
|
|
53 |
_, predicted_labelsfam = torch.max(logitsfam, dim=1)
|
54 |
probabilitiesfam[0]
|
55 |
|
56 |
+
decoded_labelsfam = yfam.inverse_transform(predicted_labelsfam.tolist())
|
57 |
decoded_labelsfam
|
58 |
|
59 |
|