Spaces:
Sleeping
Sleeping
File size: 11,397 Bytes
6116c39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import os
import requests
import time
import streamlit as st
# Get the Hugging Face API Token from environment variables
HF_API_TOKEN = os.getenv("HF_API_KEY")
if not HF_API_TOKEN:
raise ValueError("Hugging Face API Token is not set in the environment variables.")
# Hugging Face API URLs and headers for models
MISTRAL_API_URL = "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1"
MINICHAT_API_URL = "https://api-inference.huggingface.co/models/GeneZC/MiniChat-2-3B"
DIALOGPT_API_URL = "https://api-inference.huggingface.co/models/microsoft/DialoGPT-large"
PHI3_API_URL = "https://api-inference.huggingface.co/models/microsoft/Phi-3-mini-4k-instruct"
META_LLAMA_70B_API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-70B-Instruct"
META_LLAMA_8B_API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct"
GEMMA_27B_API_URL = "https://api-inference.huggingface.co/models/google/gemma-2-27b"
GEMMA_27B_IT_API_URL = "https://api-inference.huggingface.co/models/google/gemma-2-27b-it"
HEADERS = {"Authorization": f"Bearer {HF_API_TOKEN}"}
def query_mistral(payload):
response = requests.post(MISTRAL_API_URL, headers=HEADERS, json=payload)
st.write(f"Mistral API response: {response.json()}") # Debugging log
return response.json()
def query_minichat(payload):
response = requests.post(MINICHAT_API_URL, headers=HEADERS, json=payload)
return response.json()
def query_dialogpt(payload):
response = requests.post(DIALOGPT_API_URL, headers=HEADERS, json=payload)
return response.json()
def query_phi3(payload):
response = requests.post(PHI3_API_URL, headers=HEADERS, json=payload)
return response.json()
def query_meta_llama_70b(payload):
response = requests.post(META_LLAMA_70B_API_URL, headers=HEADERS, json=payload)
return response.json()
def query_meta_llama_8b(payload):
response = requests.post(META_LLAMA_8B_API_URL, headers=HEADERS, json=payload)
return response.json()
def query_gemma_27b(payload):
response = requests.post(GEMMA_27B_API_URL, headers=HEADERS, json=payload)
return response.json()
def query_gemma_27b_it(payload):
response = requests.post(GEMMA_27B_IT_API_URL, headers=HEADERS, json=payload)
return response.json()
def count_tokens(text):
return len(text.split())
# Token limit handling
MAX_TOKENS_PER_MINUTE = 1000
token_count = 0
start_time = time.time()
def handle_token_limit(text):
global token_count, start_time
current_time = time.time()
if current_time - start_time > 60:
token_count = 0
start_time = current_time
token_count += count_tokens(text)
if token_count > MAX_TOKENS_PER_MINUTE:
raise ValueError("Token limit exceeded. Please wait before sending more messages.")
def add_message_to_conversation(user_message, bot_message, model_name):
st.session_state.conversation.append((user_message, bot_message, model_name))
# Streamlit app
st.set_page_config(page_title="Multi-LLM Chatbot Interface", layout="wide")
st.title("Multi-LLM Chatbot Interface")
st.write("Multi LLM-Chatbot Interface by Thariq Arian")
# Initialize session state for conversation and model history
if "conversation" not in st.session_state:
st.session_state.conversation = []
if "model_history" not in st.session_state:
st.session_state.model_history = {model: [] for model in ["Mistral-8x7B", "Meta-Llama-3-70B-Instruct", "Meta-Llama-3-8B-Instruct", "MiniChat-2-3B", "DialoGPT (GPT-2-1.5B)", "Phi-3-mini-4k-instruct", "Gemma-2-27B", "Gemma-2-27B-IT"]}
# Dropdown for LLM selection
llm_selection = st.selectbox("Select Language Model", ["Mistral-8x7B", "Meta-Llama-3-70B-Instruct", "Meta-Llama-3-8B-Instruct", "MiniChat-2-3B", "DialoGPT (GPT-2-1.5B)", "Phi-3-mini-4k-instruct", "Gemma-2-27B", "Gemma-2-27B-IT"])
# User input for question
question = st.text_input("Question", placeholder="Enter your question here...")
# Handle user input and LLM response
if st.button("Send") and question:
try:
handle_token_limit(question)
with st.spinner("Waiting for the model to respond..."):
chat_history = " ".join(st.session_state.model_history[llm_selection]) + f"User: {question}\n"
if llm_selection == "Mistral-8x7B":
mistral_response = query_mistral({"inputs": chat_history})
if isinstance(mistral_response, list) and len(mistral_response) > 0:
mistral_answer = mistral_response[0].get("generated_text", "No response")
else:
mistral_answer = "No response"
add_message_to_conversation(question, mistral_answer, llm_selection)
st.session_state.model_history[llm_selection].append(f"User: {question}\nMistral-8x7B: {mistral_answer}\n")
elif llm_selection == "Meta-Llama-3-70B-Instruct":
meta_llama_70b_response = query_meta_llama_70b({"inputs": chat_history})
if isinstance(meta_llama_70b_response, dict) and "generated_text" in meta_llama_70b_response:
meta_llama_70b_answer = meta_llama_70b_response["generated_text"]
elif isinstance(meta_llama_70b_response, list) and len(meta_llama_70b_response) > 0:
meta_llama_70b_answer = meta_llama_70b_response[0].get("generated_text", "No response")
else:
meta_llama_70b_answer = "No response"
add_message_to_conversation(question, meta_llama_70b_answer, llm_selection)
st.session_state.model_history[llm_selection].append(f"User: {question}\nMeta-Llama-3-70B-Instruct: {meta_llama_70b_answer}\n")
elif llm_selection == "Meta-Llama-3-8B-Instruct":
meta_llama_8b_response = query_meta_llama_8b({"inputs": chat_history})
if isinstance(meta_llama_8b_response, dict) and "generated_text" in meta_llama_8b_response:
meta_llama_8b_answer = meta_llama_8b_response["generated_text"]
elif isinstance(meta_llama_8b_response, list) and len(meta_llama_8b_response) > 0:
meta_llama_8b_answer = meta_llama_8b_response[0].get("generated_text", "No response")
else:
meta_llama_8b_answer = "No response"
add_message_to_conversation(question, meta_llama_8b_answer, llm_selection)
st.session_state.model_history[llm_selection].append(f"User: {question}\nMeta-Llama-3-8B-Instruct: {meta_llama_8b_answer}\n")
elif llm_selection == "MiniChat-2-3B":
minichat_response = query_minichat({"inputs": chat_history})
if "error" in minichat_response and "is currently loading" in minichat_response["error"]:
minichat_answer = f"Model is loading, please wait {minichat_response['estimated_time']} seconds."
elif isinstance(minichat_response, list) and len(minichat_response) > 0:
minichat_answer = minichat_response[0].get("generated_text", "No response")
else:
minichat_answer = "No response"
add_message_to_conversation(question, minichat_answer, llm_selection)
st.session_state.model_history[llm_selection].append(f"User: {question}\nMiniChat-2-3B: {minichat_answer}\n")
elif llm_selection == "DialoGPT (GPT-2-1.5B)":
dialogpt_response = query_dialogpt({"inputs": chat_history})
if isinstance(dialogpt_response, dict) and "generated_text" in dialogpt_response:
dialogpt_answer = dialogpt_response["generated_text"]
elif isinstance(dialogpt_response, list) and len(dialogpt_response) > 0:
dialogpt_answer = dialogpt_response[0].get("generated_text", "No response")
else:
dialogpt_answer = "No response"
add_message_to_conversation(question, dialogpt_answer, llm_selection)
st.session_state.model_history[llm_selection].append(f"User: {question}\nDialoGPT (GPT-2-1.5B): {dialogpt_answer}\n")
elif llm_selection == "Phi-3-mini-4k-instruct":
phi3_response = query_phi3({"inputs": chat_history})
if isinstance(phi3_response, list) and len(phi3_response) > 0:
phi3_answer = phi3_response[0].get("generated_text", "No response")
else:
phi3_answer = "No response"
add_message_to_conversation(question, phi3_answer, llm_selection)
st.session_state.model_history[llm_selection].append(f"User: {question}\nPhi-3-mini-4k-instruct: {phi3_answer}\n")
elif llm_selection == "Gemma-2-27B":
gemma_response = query_gemma_27b({"inputs": chat_history})
if isinstance(gemma_response, dict) and "generated_text" in gemma_response:
gemma_answer = gemma_response["generated_text"]
elif isinstance(gemma_response, list) and len(gemma_response) > 0:
gemma_answer = gemma_response[0].get("generated_text", "No response")
else:
gemma_answer = "No response"
add_message_to_conversation(question, gemma_answer, llm_selection)
st.session_state.model_history[llm_selection].append(f"User: {question}\nGemma-2-27B: {gemma_answer}\n")
elif llm_selection == "Gemma-2-27B-IT":
gemma_27b_it_response = query_gemma_27b_it({"inputs": chat_history})
if isinstance(gemma_27b_it_response, dict) and "generated_text" in gemma_27b_it_response:
gemma_27b_it_answer = gemma_27b_it_response["generated_text"]
elif isinstance(gemma_27b_it_response, list) and len(gemma_27b_it_response) > 0:
gemma_27b_it_answer = gemma_27b_it_response[0].get("generated_text", "No response")
else:
gemma_27b_it_answer = "No response"
add_message_to_conversation(question, gemma_27b_it_answer, llm_selection)
st.session_state.model_history[llm_selection].append(f"User: {question}\nGemma-2-27B-IT: {gemma_27b_it_answer}\n")
except ValueError as e:
st.error(str(e))
# Custom CSS for chat bubbles
st.markdown(
"""
<style>
.chat-bubble {
padding: 10px 14px;
border-radius: 14px;
margin-bottom: 10px;
display: inline-block;
max-width: 80%;
color: black;
}
.chat-bubble.user {
background-color: #dcf8c6;
align-self: flex-end;
}
.chat-bubble.bot {
background-color: #fff;
align-self: flex-start;
}
.chat-container {
display: flex;
flex-direction: column;
gap: 10px;
margin-top: 20px;
}
</style>
""",
unsafe_allow_html=True
)
# Display the conversation
st.write('<div class="chat-container">', unsafe_allow_html=True)
for user_message, bot_message, model_name in st.session_state.conversation:
st.write(f'<div class="chat-bubble user">You: {user_message}</div>', unsafe_allow_html=True)
st.write(f'<div class="chat-bubble bot">{model_name}: {bot_message}</div>', unsafe_allow_html=True)
st.write('</div>', unsafe_allow_html=True) |