File size: 11,397 Bytes
6116c39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import os
import requests
import time
import streamlit as st

# Get the Hugging Face API Token from environment variables
HF_API_TOKEN = os.getenv("HF_API_KEY")
if not HF_API_TOKEN:
    raise ValueError("Hugging Face API Token is not set in the environment variables.")

# Hugging Face API URLs and headers for models
MISTRAL_API_URL = "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1"
MINICHAT_API_URL = "https://api-inference.huggingface.co/models/GeneZC/MiniChat-2-3B"
DIALOGPT_API_URL = "https://api-inference.huggingface.co/models/microsoft/DialoGPT-large"
PHI3_API_URL = "https://api-inference.huggingface.co/models/microsoft/Phi-3-mini-4k-instruct"
META_LLAMA_70B_API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-70B-Instruct"
META_LLAMA_8B_API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct"
GEMMA_27B_API_URL = "https://api-inference.huggingface.co/models/google/gemma-2-27b"
GEMMA_27B_IT_API_URL = "https://api-inference.huggingface.co/models/google/gemma-2-27b-it"
HEADERS = {"Authorization": f"Bearer {HF_API_TOKEN}"}

def query_mistral(payload):
    response = requests.post(MISTRAL_API_URL, headers=HEADERS, json=payload)
    st.write(f"Mistral API response: {response.json()}")  # Debugging log
    return response.json()

def query_minichat(payload):
    response = requests.post(MINICHAT_API_URL, headers=HEADERS, json=payload)
    return response.json()

def query_dialogpt(payload):
    response = requests.post(DIALOGPT_API_URL, headers=HEADERS, json=payload)
    return response.json()

def query_phi3(payload):
    response = requests.post(PHI3_API_URL, headers=HEADERS, json=payload)
    return response.json()

def query_meta_llama_70b(payload):
    response = requests.post(META_LLAMA_70B_API_URL, headers=HEADERS, json=payload)
    return response.json()

def query_meta_llama_8b(payload):
    response = requests.post(META_LLAMA_8B_API_URL, headers=HEADERS, json=payload)
    return response.json()

def query_gemma_27b(payload):
    response = requests.post(GEMMA_27B_API_URL, headers=HEADERS, json=payload)
    return response.json()

def query_gemma_27b_it(payload):
    response = requests.post(GEMMA_27B_IT_API_URL, headers=HEADERS, json=payload)
    return response.json()

def count_tokens(text):
    return len(text.split())

# Token limit handling
MAX_TOKENS_PER_MINUTE = 1000
token_count = 0
start_time = time.time()

def handle_token_limit(text):
    global token_count, start_time
    current_time = time.time()
    if current_time - start_time > 60:
        token_count = 0
        start_time = current_time
    token_count += count_tokens(text)
    if token_count > MAX_TOKENS_PER_MINUTE:
        raise ValueError("Token limit exceeded. Please wait before sending more messages.")

def add_message_to_conversation(user_message, bot_message, model_name):
    st.session_state.conversation.append((user_message, bot_message, model_name))

# Streamlit app
st.set_page_config(page_title="Multi-LLM Chatbot Interface", layout="wide")
st.title("Multi-LLM Chatbot Interface")
st.write("Multi LLM-Chatbot Interface by Thariq Arian")

# Initialize session state for conversation and model history
if "conversation" not in st.session_state:
    st.session_state.conversation = []
if "model_history" not in st.session_state:
    st.session_state.model_history = {model: [] for model in ["Mistral-8x7B", "Meta-Llama-3-70B-Instruct", "Meta-Llama-3-8B-Instruct", "MiniChat-2-3B", "DialoGPT (GPT-2-1.5B)", "Phi-3-mini-4k-instruct", "Gemma-2-27B", "Gemma-2-27B-IT"]}

# Dropdown for LLM selection
llm_selection = st.selectbox("Select Language Model", ["Mistral-8x7B", "Meta-Llama-3-70B-Instruct", "Meta-Llama-3-8B-Instruct", "MiniChat-2-3B", "DialoGPT (GPT-2-1.5B)", "Phi-3-mini-4k-instruct", "Gemma-2-27B", "Gemma-2-27B-IT"])

# User input for question
question = st.text_input("Question", placeholder="Enter your question here...")

# Handle user input and LLM response
if st.button("Send") and question:
    try:
        handle_token_limit(question)
        with st.spinner("Waiting for the model to respond..."):
            chat_history = " ".join(st.session_state.model_history[llm_selection]) + f"User: {question}\n"
            if llm_selection == "Mistral-8x7B":
                mistral_response = query_mistral({"inputs": chat_history})
                if isinstance(mistral_response, list) and len(mistral_response) > 0:
                    mistral_answer = mistral_response[0].get("generated_text", "No response")
                else:
                    mistral_answer = "No response"
                add_message_to_conversation(question, mistral_answer, llm_selection)
                st.session_state.model_history[llm_selection].append(f"User: {question}\nMistral-8x7B: {mistral_answer}\n")
            elif llm_selection == "Meta-Llama-3-70B-Instruct":
                meta_llama_70b_response = query_meta_llama_70b({"inputs": chat_history})
                if isinstance(meta_llama_70b_response, dict) and "generated_text" in meta_llama_70b_response:
                    meta_llama_70b_answer = meta_llama_70b_response["generated_text"]
                elif isinstance(meta_llama_70b_response, list) and len(meta_llama_70b_response) > 0:
                    meta_llama_70b_answer = meta_llama_70b_response[0].get("generated_text", "No response")
                else:
                    meta_llama_70b_answer = "No response"
                add_message_to_conversation(question, meta_llama_70b_answer, llm_selection)
                st.session_state.model_history[llm_selection].append(f"User: {question}\nMeta-Llama-3-70B-Instruct: {meta_llama_70b_answer}\n")
            elif llm_selection == "Meta-Llama-3-8B-Instruct":
                meta_llama_8b_response = query_meta_llama_8b({"inputs": chat_history})
                if isinstance(meta_llama_8b_response, dict) and "generated_text" in meta_llama_8b_response:
                    meta_llama_8b_answer = meta_llama_8b_response["generated_text"]
                elif isinstance(meta_llama_8b_response, list) and len(meta_llama_8b_response) > 0:
                    meta_llama_8b_answer = meta_llama_8b_response[0].get("generated_text", "No response")
                else:
                    meta_llama_8b_answer = "No response"
                add_message_to_conversation(question, meta_llama_8b_answer, llm_selection)
                st.session_state.model_history[llm_selection].append(f"User: {question}\nMeta-Llama-3-8B-Instruct: {meta_llama_8b_answer}\n")
            elif llm_selection == "MiniChat-2-3B":
                minichat_response = query_minichat({"inputs": chat_history})
                if "error" in minichat_response and "is currently loading" in minichat_response["error"]:
                    minichat_answer = f"Model is loading, please wait {minichat_response['estimated_time']} seconds."
                elif isinstance(minichat_response, list) and len(minichat_response) > 0:
                    minichat_answer = minichat_response[0].get("generated_text", "No response")
                else:
                    minichat_answer = "No response"
                add_message_to_conversation(question, minichat_answer, llm_selection)
                st.session_state.model_history[llm_selection].append(f"User: {question}\nMiniChat-2-3B: {minichat_answer}\n")
            elif llm_selection == "DialoGPT (GPT-2-1.5B)":
                dialogpt_response = query_dialogpt({"inputs": chat_history})
                if isinstance(dialogpt_response, dict) and "generated_text" in dialogpt_response:
                    dialogpt_answer = dialogpt_response["generated_text"]
                elif isinstance(dialogpt_response, list) and len(dialogpt_response) > 0:
                    dialogpt_answer = dialogpt_response[0].get("generated_text", "No response")
                else:
                    dialogpt_answer = "No response"
                add_message_to_conversation(question, dialogpt_answer, llm_selection)
                st.session_state.model_history[llm_selection].append(f"User: {question}\nDialoGPT (GPT-2-1.5B): {dialogpt_answer}\n")
            elif llm_selection == "Phi-3-mini-4k-instruct":
                phi3_response = query_phi3({"inputs": chat_history})
                if isinstance(phi3_response, list) and len(phi3_response) > 0:
                    phi3_answer = phi3_response[0].get("generated_text", "No response")
                else:
                    phi3_answer = "No response"
                add_message_to_conversation(question, phi3_answer, llm_selection)
                st.session_state.model_history[llm_selection].append(f"User: {question}\nPhi-3-mini-4k-instruct: {phi3_answer}\n")
            elif llm_selection == "Gemma-2-27B":
                gemma_response = query_gemma_27b({"inputs": chat_history})
                if isinstance(gemma_response, dict) and "generated_text" in gemma_response:
                    gemma_answer = gemma_response["generated_text"]
                elif isinstance(gemma_response, list) and len(gemma_response) > 0:
                    gemma_answer = gemma_response[0].get("generated_text", "No response")
                else:
                    gemma_answer = "No response"
                add_message_to_conversation(question, gemma_answer, llm_selection)
                st.session_state.model_history[llm_selection].append(f"User: {question}\nGemma-2-27B: {gemma_answer}\n")
            elif llm_selection == "Gemma-2-27B-IT":
                gemma_27b_it_response = query_gemma_27b_it({"inputs": chat_history})
                if isinstance(gemma_27b_it_response, dict) and "generated_text" in gemma_27b_it_response:
                    gemma_27b_it_answer = gemma_27b_it_response["generated_text"]
                elif isinstance(gemma_27b_it_response, list) and len(gemma_27b_it_response) > 0:
                    gemma_27b_it_answer = gemma_27b_it_response[0].get("generated_text", "No response")
                else:
                    gemma_27b_it_answer = "No response"
                add_message_to_conversation(question, gemma_27b_it_answer, llm_selection)
                st.session_state.model_history[llm_selection].append(f"User: {question}\nGemma-2-27B-IT: {gemma_27b_it_answer}\n")
    except ValueError as e:
        st.error(str(e))

# Custom CSS for chat bubbles
st.markdown(
    """
    <style>
    .chat-bubble {
        padding: 10px 14px;
        border-radius: 14px;
        margin-bottom: 10px;
        display: inline-block;
        max-width: 80%;
        color: black;
    }
    .chat-bubble.user {
        background-color: #dcf8c6;
        align-self: flex-end;
    }
    .chat-bubble.bot {
        background-color: #fff;
        align-self: flex-start;
    }
    .chat-container {
        display: flex;
        flex-direction: column;
        gap: 10px;
        margin-top: 20px;
    }
    </style>
    """,
    unsafe_allow_html=True
)

# Display the conversation
st.write('<div class="chat-container">', unsafe_allow_html=True)
for user_message, bot_message, model_name in st.session_state.conversation:
    st.write(f'<div class="chat-bubble user">You: {user_message}</div>', unsafe_allow_html=True)
    st.write(f'<div class="chat-bubble bot">{model_name}: {bot_message}</div>', unsafe_allow_html=True)
st.write('</div>', unsafe_allow_html=True)