Spaces:
Running
on
Zero
Running
on
Zero
label id vs label name
Browse files
app.py
CHANGED
|
@@ -1,7 +1,12 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import spaces
|
| 3 |
import torch
|
| 4 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
from PIL import Image
|
| 6 |
import time
|
| 7 |
|
|
@@ -12,27 +17,21 @@ def extract_model_short_name(model_id):
|
|
| 12 |
|
| 13 |
model_llmdet_id = "iSEE-Laboratory/llmdet_tiny"
|
| 14 |
processor_llmdet = AutoProcessor.from_pretrained(model_llmdet_id)
|
| 15 |
-
model_llmdet = (
|
| 16 |
-
AutoModelForZeroShotObjectDetection.from_pretrained(model_llmdet_id)
|
| 17 |
-
)
|
| 18 |
|
| 19 |
model_mm_grounding_id = "rziga/mm_grounding_dino_tiny_o365v1_goldg"
|
| 20 |
processor_mm_grounding = AutoProcessor.from_pretrained(model_mm_grounding_id)
|
| 21 |
-
model_mm_grounding = (
|
| 22 |
-
|
| 23 |
)
|
| 24 |
|
| 25 |
model_omdet_id = "omlab/omdet-turbo-swin-tiny-hf"
|
| 26 |
processor_omdet = AutoProcessor.from_pretrained(model_omdet_id)
|
| 27 |
-
model_omdet = (
|
| 28 |
-
AutoModelForZeroShotObjectDetection.from_pretrained(model_omdet_id)
|
| 29 |
-
)
|
| 30 |
|
| 31 |
model_owlv2_id = "google/owlv2-large-patch14-ensemble"
|
| 32 |
processor_owlv2 = AutoProcessor.from_pretrained(model_owlv2_id)
|
| 33 |
-
model_owlv2 = (
|
| 34 |
-
AutoModelForZeroShotObjectDetection.from_pretrained(model_owlv2_id)
|
| 35 |
-
)
|
| 36 |
|
| 37 |
model_llmdet_name = extract_model_short_name(model_llmdet_id)
|
| 38 |
model_mm_grounding_name = extract_model_short_name(model_mm_grounding_id)
|
|
@@ -44,7 +43,7 @@ model_owlv2_name = extract_model_short_name(model_owlv2_id)
|
|
| 44 |
def detect(model, processor, image: Image.Image, prompts: list, threshold: float):
|
| 45 |
t0 = time.perf_counter()
|
| 46 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 47 |
-
model
|
| 48 |
texts = [prompts]
|
| 49 |
inputs = processor(images=image, text=texts, return_tensors="pt").to(device)
|
| 50 |
with torch.inference_mode():
|
|
@@ -54,8 +53,23 @@ def detect(model, processor, image: Image.Image, prompts: list, threshold: float
|
|
| 54 |
)
|
| 55 |
result = results[0]
|
| 56 |
annotations = []
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
if score >= threshold:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
xmin, ymin, xmax, ymax = [int(x) for x in box.tolist()]
|
| 60 |
annotations.append(((xmin, ymin, xmax, ymax), f"{label_name} {score:.2f}"))
|
| 61 |
elapsed_ms = (time.perf_counter() - t0) * 1000
|
|
@@ -64,13 +78,26 @@ def detect(model, processor, image: Image.Image, prompts: list, threshold: float
|
|
| 64 |
|
| 65 |
|
| 66 |
def run_detection(
|
| 67 |
-
image: Image.Image,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
):
|
| 69 |
prompts = [p.strip() for p in prompts_str.split(",")]
|
| 70 |
-
ann_llm, time_llm = detect(
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
return (
|
| 75 |
(image, ann_llm),
|
| 76 |
time_llm,
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import spaces
|
| 3 |
import torch
|
| 4 |
+
from transformers import (
|
| 5 |
+
AutoProcessor,
|
| 6 |
+
AutoModelForZeroShotObjectDetection,
|
| 7 |
+
Owlv2ForObjectDetection,
|
| 8 |
+
OmDetTurboForObjectDetection,
|
| 9 |
+
)
|
| 10 |
from PIL import Image
|
| 11 |
import time
|
| 12 |
|
|
|
|
| 17 |
|
| 18 |
model_llmdet_id = "iSEE-Laboratory/llmdet_tiny"
|
| 19 |
processor_llmdet = AutoProcessor.from_pretrained(model_llmdet_id)
|
| 20 |
+
model_llmdet = AutoModelForZeroShotObjectDetection.from_pretrained(model_llmdet_id)
|
|
|
|
|
|
|
| 21 |
|
| 22 |
model_mm_grounding_id = "rziga/mm_grounding_dino_tiny_o365v1_goldg"
|
| 23 |
processor_mm_grounding = AutoProcessor.from_pretrained(model_mm_grounding_id)
|
| 24 |
+
model_mm_grounding = AutoModelForZeroShotObjectDetection.from_pretrained(
|
| 25 |
+
model_mm_grounding_id
|
| 26 |
)
|
| 27 |
|
| 28 |
model_omdet_id = "omlab/omdet-turbo-swin-tiny-hf"
|
| 29 |
processor_omdet = AutoProcessor.from_pretrained(model_omdet_id)
|
| 30 |
+
model_omdet = AutoModelForZeroShotObjectDetection.from_pretrained(model_omdet_id)
|
|
|
|
|
|
|
| 31 |
|
| 32 |
model_owlv2_id = "google/owlv2-large-patch14-ensemble"
|
| 33 |
processor_owlv2 = AutoProcessor.from_pretrained(model_owlv2_id)
|
| 34 |
+
model_owlv2 = AutoModelForZeroShotObjectDetection.from_pretrained(model_owlv2_id)
|
|
|
|
|
|
|
| 35 |
|
| 36 |
model_llmdet_name = extract_model_short_name(model_llmdet_id)
|
| 37 |
model_mm_grounding_name = extract_model_short_name(model_mm_grounding_id)
|
|
|
|
| 43 |
def detect(model, processor, image: Image.Image, prompts: list, threshold: float):
|
| 44 |
t0 = time.perf_counter()
|
| 45 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 46 |
+
model.to(device).eval()
|
| 47 |
texts = [prompts]
|
| 48 |
inputs = processor(images=image, text=texts, return_tensors="pt").to(device)
|
| 49 |
with torch.inference_mode():
|
|
|
|
| 53 |
)
|
| 54 |
result = results[0]
|
| 55 |
annotations = []
|
| 56 |
+
|
| 57 |
+
if isinstance(model, Owlv2ForObjectDetection) or isinstance(
|
| 58 |
+
model, OmDetTurboForObjectDetection
|
| 59 |
+
):
|
| 60 |
+
key = "labels"
|
| 61 |
+
check = True
|
| 62 |
+
else:
|
| 63 |
+
key = "text_labels"
|
| 64 |
+
check = False
|
| 65 |
+
|
| 66 |
+
for box, score, label in zip(result["boxes"], result["scores"], result[key]):
|
| 67 |
if score >= threshold:
|
| 68 |
+
if check:
|
| 69 |
+
label_id = label
|
| 70 |
+
label_name = prompts[label_id]
|
| 71 |
+
else:
|
| 72 |
+
label_name = label
|
| 73 |
xmin, ymin, xmax, ymax = [int(x) for x in box.tolist()]
|
| 74 |
annotations.append(((xmin, ymin, xmax, ymax), f"{label_name} {score:.2f}"))
|
| 75 |
elapsed_ms = (time.perf_counter() - t0) * 1000
|
|
|
|
| 78 |
|
| 79 |
|
| 80 |
def run_detection(
|
| 81 |
+
image: Image.Image,
|
| 82 |
+
prompts_str: str,
|
| 83 |
+
threshold_llm,
|
| 84 |
+
threshold_mm,
|
| 85 |
+
threshold_owlv2,
|
| 86 |
+
threshold_omdet,
|
| 87 |
):
|
| 88 |
prompts = [p.strip() for p in prompts_str.split(",")]
|
| 89 |
+
ann_llm, time_llm = detect(
|
| 90 |
+
model_llmdet, processor_llmdet, image, prompts, threshold_llm
|
| 91 |
+
)
|
| 92 |
+
ann_mm, time_mm = detect(
|
| 93 |
+
model_mm_grounding, processor_mm_grounding, image, prompts, threshold_mm
|
| 94 |
+
)
|
| 95 |
+
ann_owlv2, time_owlv2 = detect(
|
| 96 |
+
model_owlv2, processor_owlv2, image, prompts, threshold_owlv2
|
| 97 |
+
)
|
| 98 |
+
ann_omdet, time_omdet = detect(
|
| 99 |
+
model_omdet, processor_omdet, image, prompts, threshold_omdet
|
| 100 |
+
)
|
| 101 |
return (
|
| 102 |
(image, ann_llm),
|
| 103 |
time_llm,
|