Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import spaces
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import time
|
| 7 |
+
|
| 8 |
+
def extract_model_short_name(model_id):
|
| 9 |
+
return model_id.split("/")[-1].replace("-", " ").replace("_", " ")
|
| 10 |
+
|
| 11 |
+
model_llmdet_id = "iSEE-Laboratory/llmdet_tiny"
|
| 12 |
+
model_mm_grounding_id = "rziga/mm_grounding_dino_tiny_o365v1_goldg"
|
| 13 |
+
|
| 14 |
+
model_llmdet_name = extract_model_short_name(model_llmdet_id)
|
| 15 |
+
model_mm_grounding_name = extract_model_short_name(model_mm_grounding_id)
|
| 16 |
+
|
| 17 |
+
def detect_llmdet(image: Image.Image, prompts: list, threshold: float):
|
| 18 |
+
t0 = time.perf_counter()
|
| 19 |
+
model_id = model_llmdet_id
|
| 20 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 21 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 22 |
+
model = AutoModelForZeroShotObjectDetection.from_pretrained(model_id).to(device).eval()
|
| 23 |
+
texts = [prompts]
|
| 24 |
+
inputs = processor(images=image, text=texts, return_tensors="pt").to(device)
|
| 25 |
+
with torch.no_grad():
|
| 26 |
+
outputs = model(**inputs)
|
| 27 |
+
results = processor.post_process_grounded_object_detection(
|
| 28 |
+
outputs,
|
| 29 |
+
threshold=threshold,
|
| 30 |
+
target_sizes=[image.size[::-1]]
|
| 31 |
+
)
|
| 32 |
+
result = results[0]
|
| 33 |
+
annotations = []
|
| 34 |
+
raw_results = []
|
| 35 |
+
for box, score, label in zip(result["boxes"], result["scores"], result["labels"]):
|
| 36 |
+
if score >= threshold:
|
| 37 |
+
xmin, ymin, xmax, ymax = [int(x) for x in box.tolist()]
|
| 38 |
+
annotations.append(((xmin, ymin, xmax, ymax), f"{label} {score:.2f}"))
|
| 39 |
+
raw_results.append(f"Detected {label} with confidence {score:.2f} at location [{xmin}, {ymin}, {xmax}, {ymax}]")
|
| 40 |
+
elapsed_ms = (time.perf_counter() - t0) * 1000
|
| 41 |
+
time_taken = f"**Inference time ({model_llmdet_name}):** {elapsed_ms:.0f} ms"
|
| 42 |
+
raw_text = "\n".join(raw_results) if raw_results else "No detections"
|
| 43 |
+
return annotations, raw_text, time_taken
|
| 44 |
+
|
| 45 |
+
def detect_mm_grounding(image: Image.Image, prompts: list, threshold: float):
|
| 46 |
+
t0 = time.perf_counter()
|
| 47 |
+
model_id = model_mm_grounding_id
|
| 48 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 49 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 50 |
+
model = AutoModelForZeroShotObjectDetection.from_pretrained(model_id).to(device).eval()
|
| 51 |
+
texts = [prompts]
|
| 52 |
+
inputs = processor(images=image, text=texts, return_tensors="pt").to(device)
|
| 53 |
+
with torch.no_grad():
|
| 54 |
+
outputs = model(**inputs)
|
| 55 |
+
results = processor.post_process_grounded_object_detection(
|
| 56 |
+
outputs,
|
| 57 |
+
threshold=threshold,
|
| 58 |
+
target_sizes=[image.size[::-1]]
|
| 59 |
+
)
|
| 60 |
+
result = results[0]
|
| 61 |
+
annotations = []
|
| 62 |
+
raw_results = []
|
| 63 |
+
for box, score, label in zip(result["boxes"], result["scores"], result["labels"]):
|
| 64 |
+
if score >= threshold:
|
| 65 |
+
xmin, ymin, xmax, ymax = [int(x) for x in box.tolist()]
|
| 66 |
+
annotations.append(((xmin, ymin, xmax, ymax), f"{label} {score:.2f}"))
|
| 67 |
+
raw_results.append(f"Detected {label} with confidence {score:.2f} at location [{xmin}, {ymin}, {xmax}, {ymax}]")
|
| 68 |
+
elapsed_ms = (time.perf_counter() - t0) * 1000
|
| 69 |
+
time_taken = f"**Inference time ({model_mm_grounding_name}):** {elapsed_ms:.0f} ms"
|
| 70 |
+
raw_text = "\n".join(raw_results) if raw_results else "No detections"
|
| 71 |
+
return annotations, raw_text, time_taken
|
| 72 |
+
|
| 73 |
+
@spaces.GPU
|
| 74 |
+
def run_detection(image, prompts_str, threshold):
|
| 75 |
+
if image is None:
|
| 76 |
+
return (None, []), "No detections", "", (None, []), "No detections", ""
|
| 77 |
+
prompts = [p.strip() for p in prompts_str.split(",")]
|
| 78 |
+
ann_llm, raw_llm, time_llm = detect_llmdet(image, prompts, threshold)
|
| 79 |
+
ann_mm, raw_mm, time_mm = detect_mm_grounding(image, prompts, threshold)
|
| 80 |
+
return (image, ann_llm), raw_llm, time_llm, (image, ann_mm), raw_mm, time_mm
|
| 81 |
+
|
| 82 |
+
with gr.Blocks() as app:
|
| 83 |
+
gr.Markdown("# Zero-Shot Object Detection Arena")
|
| 84 |
+
gr.Markdown("### Compare different zero-shot object detection models on the same image and prompts.")
|
| 85 |
+
with gr.Row():
|
| 86 |
+
with gr.Column(scale=1):
|
| 87 |
+
image = gr.Image(type="pil", label="Upload an image", height=400)
|
| 88 |
+
prompts = gr.Textbox(label="Prompts (comma-separated)", value="a cat, a remote control")
|
| 89 |
+
threshold = gr.Slider(label="Confidence Threshold", minimum=0.0, maximum=1.0, step=0.05, value=0.30)
|
| 90 |
+
generate_btn = gr.Button(value="Detect")
|
| 91 |
+
with gr.Column(scale=2):
|
| 92 |
+
output_image_llm = gr.AnnotatedImage(label=f"Annotated image for {model_llmdet_name}", height=400)
|
| 93 |
+
output_text_llm = gr.Textbox(label=f"Model detections for {model_llmdet_name}", lines=10)
|
| 94 |
+
output_time_llm = gr.Markdown()
|
| 95 |
+
with gr.Column(scale=2):
|
| 96 |
+
output_image_mm = gr.AnnotatedImage(label=f"Annotated image for {model_mm_grounding_name}", height=400)
|
| 97 |
+
output_text_mm = gr.Textbox(label=f"Model detections for {model_mm_grounding_name}", lines=10)
|
| 98 |
+
output_time_mm = gr.Markdown()
|
| 99 |
+
gr.Markdown("### Examples")
|
| 100 |
+
example_data = [
|
| 101 |
+
["http://images.cocodataset.org/val2017/000000039769.jpg", "a cat, a remote control", 0.4],
|
| 102 |
+
["http://images.cocodataset.org/val2017/000000000139.jpg", "a person, a tv, a remote", 0.3],
|
| 103 |
+
]
|
| 104 |
+
gr.Examples(
|
| 105 |
+
examples=example_data,
|
| 106 |
+
inputs=[image, prompts, threshold],
|
| 107 |
+
label="Click an example to populate the input",
|
| 108 |
+
)
|
| 109 |
+
generate_btn.click(
|
| 110 |
+
fn=run_detection,
|
| 111 |
+
inputs=[image, prompts, threshold],
|
| 112 |
+
outputs=[output_image_llm, output_text_llm, output_time_llm, output_image_mm, output_text_mm, output_time_mm],
|
| 113 |
+
)
|
| 114 |
+
image.upload(
|
| 115 |
+
fn=run_detection,
|
| 116 |
+
inputs=[image, prompts, threshold],
|
| 117 |
+
outputs=[output_image_llm, output_text_llm, output_time_llm, output_image_mm, output_text_mm, output_time_mm],
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
app.launch()
|