ariG23498 HF staff commited on
Commit
f5a4c0d
·
verified ·
1 Parent(s): d7423f5

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +78 -0
app.py ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoProcessor
3
+ import torch
4
+ from PIL import Image
5
+ import io
6
+
7
+ # Load model and processor (using CPU)
8
+ folder_path = "diffusers/shot-categorizer-v0"
9
+ model = AutoModelForCausalLM.from_pretrained(folder_path, trust_remote_code=True).eval()
10
+ processor = AutoProcessor.from_pretrained(folder_path, trust_remote_code=True)
11
+
12
+ # Define analysis function
13
+ def analyze_image(image):
14
+ # Convert Gradio image input to PIL Image
15
+ if isinstance(image, Image.Image):
16
+ img = image.convert("RGB")
17
+ else:
18
+ img = Image.open(io.BytesIO(image)).convert("RGB")
19
+
20
+ prompts = ["<COLOR>", "<LIGHTING>", "<LIGHTING_TYPE>", "<COMPOSITION>"]
21
+ results = {}
22
+
23
+ # Process each prompt
24
+ with torch.no_grad():
25
+ for prompt in prompts:
26
+ inputs = processor(text=prompt, images=img, return_tensors="pt")
27
+ generated_ids = model.generate(
28
+ input_ids=inputs["input_ids"],
29
+ pixel_values=inputs["pixel_values"],
30
+ max_new_tokens=1024,
31
+ early_stopping=False,
32
+ do_sample=False,
33
+ num_beams=3,
34
+ )
35
+ generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
36
+ parsed_answer = processor.post_process_generation(
37
+ generated_text, task=prompt, image_size=(img.width, img.height)
38
+ )
39
+ results[prompt] = parsed_answer
40
+
41
+ # Format the output
42
+ output_text = "Image Analysis Results:\n\n"
43
+ output_text += f"Color: {results['<COLOR>']}\n"
44
+ output_text += f"Lighting: {results['<LIGHTING>']}\n"
45
+ output_text += f"Lighting Type: {results['<LIGHTING_TYPE>']}\n"
46
+ output_text += f"Composition: {results['<COMPOSITION>']}\n"
47
+
48
+ return output_text
49
+
50
+ # Create Gradio interface
51
+ with gr.Blocks(title="Image Analyzer") as demo:
52
+ gr.Markdown("# Image Analysis Demo")
53
+ gr.Markdown("Upload an image to analyze its color, lighting, and composition characteristics.")
54
+
55
+ with gr.Row():
56
+ with gr.Column():
57
+ image_input = gr.Image(type="pil", label="Upload Image")
58
+ analyze_button = gr.Button("Analyze Image")
59
+
60
+ with gr.Column():
61
+ output_text = gr.Textbox(label="Analysis Results", lines=10)
62
+
63
+ # Add example images
64
+ examples = gr.Examples(
65
+ examples=["./assets/image_3.jpg"],
66
+ inputs=image_input,
67
+ label="Try with this example"
68
+ )
69
+
70
+ # Connect the button to the function
71
+ analyze_button.click(
72
+ fn=analyze_image,
73
+ inputs=image_input,
74
+ outputs=output_text
75
+ )
76
+
77
+ # Launch the demo
78
+ demo.launch()