ari7cr's picture
Update app.py
2d69dd7 verified
raw
history blame
4.26 kB
import gradio as gr
from transformers import pipeline
import torch
# Load the instruct version of the model
physician = pipeline("text-generation", model="HuggingFaceTB/SmolLM2-1.7B-Instruct")
patient = pipeline("text-generation", model="HuggingFaceTB/SmolLM2-1.7B-Instruct")
# System prompts to define roles (not included in the input prompt)
patient_system_prompt = "You are a patient describing your symptoms to a physician."
physician_system_prompt = "You are a physician responding to a patient's symptoms."
def generate_conversation(topic, turns):
conversation = []
total_tokens = 0
physician_tokens = 0
patient_tokens = 0
# Initial prompt for the patient
patient_input = f"Patient: I'm here to talk about {topic}."
print(f"Patient Initial Input: {patient_input}") # Debugging
patient_response = patient(
patient_input,
max_new_tokens=50, # Allow the model to generate up to 50 new tokens
num_return_sequences=1,
truncation=True, # Explicitly enable truncation
do_sample=True, # Enable sampling
temperature=0.7 # Control randomness
)[0]['generated_text']
print(f"Patient Response: {patient_response}") # Debugging
patient_tokens += len(patient_response.split())
conversation.append({"role": "patient", "message": patient_response, "tokens": len(patient_response.split())})
for turn in range(turns):
# Physician's turn
print(f"Physician Turn {turn} Prompt: {patient_response}") # Debugging
physician_response = physician(
f"Physician: {patient_response}",
max_new_tokens=50, # Allow the model to generate up to 50 new tokens
num_return_sequences=1,
truncation=True, # Explicitly enable truncation
do_sample=True, # Enable sampling
temperature=0.7 # Control randomness
)[0]['generated_text']
print(f"Physician Response: {physician_response}") # Debugging
physician_tokens += len(physician_response.split())
conversation.append({"role": "physician", "message": physician_response, "tokens": len(physician_response.split())})
# Patient's turn
print(f"Patient Turn {turn} Prompt: {physician_response}") # Debugging
patient_response = patient(
f"Patient: {physician_response}",
max_new_tokens=50, # Allow the model to generate up to 50 new tokens
num_return_sequences=1,
truncation=True, # Explicitly enable truncation
do_sample=True, # Enable sampling
temperature=0.7 # Control randomness
)[0]['generated_text']
print(f"Patient Response: {patient_response}") # Debugging
patient_tokens += len(patient_response.split())
conversation.append({"role": "patient", "message": patient_response, "tokens": len(patient_response.split())})
# Summarize the conversation
summary = {
"total_tokens": physician_tokens + patient_tokens,
"physician_tokens": physician_tokens,
"patient_tokens": patient_tokens
}
return conversation, summary
def app_interface(topic, turns):
conversation, summary = generate_conversation(topic, turns)
output = {
"input": {"topic": topic, "turns": turns},
"conversation": conversation,
"summary": summary
}
return output
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## πŸ‘¨β€βš•οΈ Synthetic Data Generation: Physician-Patient Role-Play πŸ‘€")
with gr.Row():
topic_input = gr.Textbox(label="Enter Disease/Topic", placeholder="e.g., chest pain")
turns_input = gr.Number(label="Number of Turns", value=1) # Default to 1 turn for debugging
submit_button = gr.Button("πŸš€ Start Interaction")
output_json = gr.JSON(label="Generated Conversation")
# Download button for the conversation
download_button = gr.Button("πŸ“₯ Download Conversation")
download_button.click(
fn=lambda data: gr.File.download(data),
inputs=output_json,
outputs=gr.File()
)
submit_button.click(
fn=app_interface,
inputs=[topic_input, turns_input],
outputs=output_json
)
demo.launch()