arhanv commited on
Commit
338e293
·
1 Parent(s): ac3dd61

ported fx generation

Browse files
Files changed (5) hide show
  1. .gitignore +2 -0
  2. app.py +11 -1
  3. fx.py +123 -0
  4. inference.py +6 -1
  5. requirements.txt +3 -0
.gitignore CHANGED
@@ -3,3 +3,5 @@
3
  /dataset/unzipped
4
  /dataset/all_sounds
5
  *.pyc
 
 
 
3
  /dataset/unzipped
4
  /dataset/all_sounds
5
  *.pyc
6
+ /dataset/processed_audio
7
+ *_concat*.wav
app.py CHANGED
@@ -5,17 +5,27 @@ import soundfile as sf
5
  import numpy as np
6
  from inference import generate_drum_kit
7
  from audio_utils import play_audio
 
8
 
9
  # Streamlit UI
10
  st.title("Generate Drum Kits with Text")
11
 
12
  # User Inputs
13
- prompt = st.text_input("Describe your drum kit (e.g., 'warm vintage')", "8-bit video game")
14
  kit_size = st.slider("Number of sounds per instrument:", 1, 10, 4)
 
 
 
 
 
 
15
 
16
  # Run the inference
17
  if st.button("Generate Drum Kit"):
18
  drum_kit = generate_drum_kit(prompt, kit_size)
 
 
 
19
  st.session_state["drum_kit"] = drum_kit # Store results
20
 
21
  # Display results
 
5
  import numpy as np
6
  from inference import generate_drum_kit
7
  from audio_utils import play_audio
8
+ from fx import get_fx
9
 
10
  # Streamlit UI
11
  st.title("Generate Drum Kits with Text")
12
 
13
  # User Inputs
14
+ prompt = st.text_input("Describe your drum kit:", "warm vintage acoustic")
15
  kit_size = st.slider("Number of sounds per instrument:", 1, 10, 4)
16
+ use_fx = st.toggle("Apply audio effects?")
17
+ if use_fx:
18
+ if st.toggle("Use a different prompt for audio effects?"):
19
+ fx_prompt = st.text_input("Describe your desired FX tone:", "soft and ethereal telephone")
20
+ else:
21
+ fx_prompt = prompt
22
 
23
  # Run the inference
24
  if st.button("Generate Drum Kit"):
25
  drum_kit = generate_drum_kit(prompt, kit_size)
26
+ if use_fx:
27
+ drum_kit, fx_params = get_fx(drum_kit, fx_prompt)
28
+ st.write(fx_params)
29
  st.session_state["drum_kit"] = drum_kit # Store results
30
 
31
  # Display results
fx.py ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from inference import get_clap_embeddings_from_audio, get_clap_embeddings_from_text
2
+ from pedalboard import Pedalboard, Reverb, HighpassFilter, LowpassFilter, Distortion, Bitcrush
3
+ from sklearn.metrics.pairwise import cosine_similarity
4
+ import soundfile as sf
5
+ from skopt import gp_minimize
6
+ from skopt.space import Real
7
+ import librosa
8
+ import numpy as np
9
+ import os
10
+
11
+ def concatenate_sounds(drum_kit, output_path="temp_concat.wav"):
12
+ """Stitch together all drum sounds into one audio file."""
13
+ all_audio = []
14
+ sr = 48000
15
+ for instrument, samples in drum_kit.items():
16
+ for sample in samples:
17
+ audio, _ = librosa.load(sample, sr=48000)
18
+ all_audio.append(audio)
19
+
20
+ # Concatenate all sounds with a small silence gap
21
+ gap = np.zeros(int(sr * 0.2)) # 200ms silence between sounds
22
+ full_audio = np.concatenate([item for audio in all_audio for item in (audio, gap)])
23
+
24
+ # Save to temp file
25
+ sf.write(output_path, full_audio, sr)
26
+ return output_path
27
+
28
+ def evaluate_fitness(audio_path, text_embed):
29
+ """Compute similarity between processed audio and text query."""
30
+ audio_embed = get_clap_embeddings_from_audio(audio_path)
31
+ return cosine_similarity([text_embed], [audio_embed])[0][0]
32
+
33
+ def apply_fx(audio_path, params, write_wav=True, output_dir="processed_audio"):
34
+ """Apply EQ and Reverb to an audio file and return the modified file path."""
35
+ audio, sr = librosa.load(audio_path, sr=48000)
36
+
37
+ board = Pedalboard([
38
+ LowpassFilter(cutoff_frequency_hz=params['lowpass']),
39
+ HighpassFilter(cutoff_frequency_hz=params['highpass']),
40
+ Distortion(drive_db=params['drive_db']),
41
+ Bitcrush(bit_depth=params['bit_depth']),
42
+ Reverb(room_size=params['reverb_size'], wet_level=params['reverb_wet'])
43
+ ])
44
+ processed_audio = board(audio, sr)
45
+ if write_wav:
46
+ # Determine output directory dynamically
47
+ base_dir = os.path.dirname(os.path.dirname(audio_path)) # Get 'dataset' level
48
+ output_dir = os.path.join(base_dir, output_dir)
49
+
50
+ # Ensure the output directory exists
51
+ os.makedirs(output_dir, exist_ok=True)
52
+ # Create new file path inside the processed_sounds directory
53
+ file_name = os.path.basename(audio_path).replace(".wav", "_processed.wav")
54
+ output_path = os.path.join(output_dir, file_name)
55
+
56
+ # Save processed audio
57
+ sf.write(output_path, processed_audio, sr)
58
+ return output_path
59
+ else:
60
+ return processed_audio
61
+
62
+ def objective_function(params, audio_file, text_embedding):
63
+ """Objective function for Bayesian Optimization using the concatenated file."""
64
+ processed_audio = apply_fx(audio_file, {
65
+ "lowpass": params[0],
66
+ "highpass": params[1],
67
+ "reverb_size": params[2],
68
+ "reverb_wet": params[3],
69
+ "drive_db": params[4],
70
+ "bit_depth": params[5]
71
+ }, write_wav=True)
72
+ similarity = evaluate_fitness(processed_audio, text_embedding)
73
+ return -similarity # Minimize negative similarity (maximize similarity)
74
+
75
+ def get_params_dict(params_list):
76
+ return {
77
+ "lowpass cutoff (Hz)": params_list[0],
78
+ "highpass cutoff (Hz)": params_list[1],
79
+ "reverb size": params_list[2],
80
+ "reverb mix": params_list[3],
81
+ "distortion - gain_db": params_list[4],
82
+ "bitcrush - bit depth": params_list[5]
83
+ }
84
+
85
+ # Define parameter search space
86
+ search_space = [
87
+ Real(5000, 15000, name="lowpass"),
88
+ Real(50, 1000, name="highpass"),
89
+ Real(0.0, 0.8, name="reverb_size"),
90
+ Real(0.0, 0.8, name="reverb_wet"),
91
+ Real(0.0, 20.0, name="drive_db"),
92
+ Real(6.0, 32.0, name="bit_depth")
93
+ ]
94
+
95
+ ##### Main function #####
96
+ def get_fx(drum_kit, fx_prompt):
97
+ """Optimize FX settings for the entire drum kit by using a concatenated audio file."""
98
+ text_embedding = get_clap_embeddings_from_text(fx_prompt)
99
+
100
+ # Concatenate all drum sounds
101
+ concat_file = concatenate_sounds(drum_kit)
102
+
103
+ # Define the objective function for the concatenated file
104
+ def obj_func(params):
105
+ return objective_function(params, concat_file, text_embedding)
106
+
107
+ # Run Bayesian optimization
108
+ res = gp_minimize(obj_func, search_space, n_calls=30, random_state=42)
109
+ best_params = res.x
110
+
111
+ # Apply the best FX parameters to each individual sound
112
+ optimized_kit = {}
113
+ for instrument, samples in drum_kit.items():
114
+ optimized_kit[instrument] = [apply_fx(sample, {
115
+ "lowpass": best_params[0],
116
+ "highpass": best_params[1],
117
+ "reverb_size": best_params[2],
118
+ "reverb_wet": best_params[3],
119
+ "drive_db": best_params[4],
120
+ "bit_depth": best_params[5]
121
+ }, write_wav=True) for sample in samples]
122
+
123
+ return optimized_kit, get_params_dict(best_params)
inference.py CHANGED
@@ -8,7 +8,6 @@ import zipfile
8
  import json
9
  from transformers import ClapModel, ClapProcessor
10
  import torch
11
- import shutil
12
 
13
  dataset_zip = "dataset/all_sounds.zip"
14
  extracted_folder = "dataset/all_sounds"
@@ -65,6 +64,12 @@ def get_clap_embeddings_from_text(text):
65
  text_embeddings = model.get_text_features(**inputs)
66
  return text_embeddings.squeeze(0).numpy()
67
 
 
 
 
 
 
 
68
  def find_top_sounds(text_embed, instrument, top_N=4):
69
  """Finds the closest N sounds for an instrument."""
70
  valid_sounds = metadata[metadata["Instrument"] == instrument].index.tolist()
 
8
  import json
9
  from transformers import ClapModel, ClapProcessor
10
  import torch
 
11
 
12
  dataset_zip = "dataset/all_sounds.zip"
13
  extracted_folder = "dataset/all_sounds"
 
64
  text_embeddings = model.get_text_features(**inputs)
65
  return text_embeddings.squeeze(0).numpy()
66
 
67
+ def get_clap_embeddings_from_audio(audio_path):
68
+ audio, sr = librosa.load(audio_path)
69
+ inputs = processor(audios=[audio], return_tensors="pt", sampling_rate=48000)
70
+ with torch.no_grad():
71
+ return model.get_audio_features(**inputs).squeeze(0).numpy()
72
+
73
  def find_top_sounds(text_embed, instrument, top_N=4):
74
  """Finds the closest N sounds for an instrument."""
75
  valid_sounds = metadata[metadata["Instrument"] == instrument].index.tolist()
requirements.txt CHANGED
@@ -30,10 +30,12 @@ numba==0.61.0
30
  numpy==2.1.3
31
  packaging==24.2
32
  pandas==2.2.3
 
33
  pillow==11.1.0
34
  platformdirs==4.3.6
35
  pooch==1.8.2
36
  protobuf==5.29.3
 
37
  pyarrow==19.0.1
38
  pycparser==2.22
39
  pydeck==0.9.1
@@ -46,6 +48,7 @@ requests==2.32.3
46
  rpds-py==0.23.1
47
  safetensors==0.5.3
48
  scikit-learn==1.6.1
 
49
  scipy==1.15.2
50
  six==1.17.0
51
  smmap==5.0.2
 
30
  numpy==2.1.3
31
  packaging==24.2
32
  pandas==2.2.3
33
+ pedalboard==0.9.16
34
  pillow==11.1.0
35
  platformdirs==4.3.6
36
  pooch==1.8.2
37
  protobuf==5.29.3
38
+ pyaml==25.1.0
39
  pyarrow==19.0.1
40
  pycparser==2.22
41
  pydeck==0.9.1
 
48
  rpds-py==0.23.1
49
  safetensors==0.5.3
50
  scikit-learn==1.6.1
51
+ scikit-optimize==0.10.2
52
  scipy==1.15.2
53
  six==1.17.0
54
  smmap==5.0.2