Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
ported fx generation
Browse files- .gitignore +2 -0
- app.py +11 -1
- fx.py +123 -0
- inference.py +6 -1
- requirements.txt +3 -0
.gitignore
CHANGED
@@ -3,3 +3,5 @@
|
|
3 |
/dataset/unzipped
|
4 |
/dataset/all_sounds
|
5 |
*.pyc
|
|
|
|
|
|
3 |
/dataset/unzipped
|
4 |
/dataset/all_sounds
|
5 |
*.pyc
|
6 |
+
/dataset/processed_audio
|
7 |
+
*_concat*.wav
|
app.py
CHANGED
@@ -5,17 +5,27 @@ import soundfile as sf
|
|
5 |
import numpy as np
|
6 |
from inference import generate_drum_kit
|
7 |
from audio_utils import play_audio
|
|
|
8 |
|
9 |
# Streamlit UI
|
10 |
st.title("Generate Drum Kits with Text")
|
11 |
|
12 |
# User Inputs
|
13 |
-
prompt = st.text_input("Describe your drum kit
|
14 |
kit_size = st.slider("Number of sounds per instrument:", 1, 10, 4)
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# Run the inference
|
17 |
if st.button("Generate Drum Kit"):
|
18 |
drum_kit = generate_drum_kit(prompt, kit_size)
|
|
|
|
|
|
|
19 |
st.session_state["drum_kit"] = drum_kit # Store results
|
20 |
|
21 |
# Display results
|
|
|
5 |
import numpy as np
|
6 |
from inference import generate_drum_kit
|
7 |
from audio_utils import play_audio
|
8 |
+
from fx import get_fx
|
9 |
|
10 |
# Streamlit UI
|
11 |
st.title("Generate Drum Kits with Text")
|
12 |
|
13 |
# User Inputs
|
14 |
+
prompt = st.text_input("Describe your drum kit:", "warm vintage acoustic")
|
15 |
kit_size = st.slider("Number of sounds per instrument:", 1, 10, 4)
|
16 |
+
use_fx = st.toggle("Apply audio effects?")
|
17 |
+
if use_fx:
|
18 |
+
if st.toggle("Use a different prompt for audio effects?"):
|
19 |
+
fx_prompt = st.text_input("Describe your desired FX tone:", "soft and ethereal telephone")
|
20 |
+
else:
|
21 |
+
fx_prompt = prompt
|
22 |
|
23 |
# Run the inference
|
24 |
if st.button("Generate Drum Kit"):
|
25 |
drum_kit = generate_drum_kit(prompt, kit_size)
|
26 |
+
if use_fx:
|
27 |
+
drum_kit, fx_params = get_fx(drum_kit, fx_prompt)
|
28 |
+
st.write(fx_params)
|
29 |
st.session_state["drum_kit"] = drum_kit # Store results
|
30 |
|
31 |
# Display results
|
fx.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from inference import get_clap_embeddings_from_audio, get_clap_embeddings_from_text
|
2 |
+
from pedalboard import Pedalboard, Reverb, HighpassFilter, LowpassFilter, Distortion, Bitcrush
|
3 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
4 |
+
import soundfile as sf
|
5 |
+
from skopt import gp_minimize
|
6 |
+
from skopt.space import Real
|
7 |
+
import librosa
|
8 |
+
import numpy as np
|
9 |
+
import os
|
10 |
+
|
11 |
+
def concatenate_sounds(drum_kit, output_path="temp_concat.wav"):
|
12 |
+
"""Stitch together all drum sounds into one audio file."""
|
13 |
+
all_audio = []
|
14 |
+
sr = 48000
|
15 |
+
for instrument, samples in drum_kit.items():
|
16 |
+
for sample in samples:
|
17 |
+
audio, _ = librosa.load(sample, sr=48000)
|
18 |
+
all_audio.append(audio)
|
19 |
+
|
20 |
+
# Concatenate all sounds with a small silence gap
|
21 |
+
gap = np.zeros(int(sr * 0.2)) # 200ms silence between sounds
|
22 |
+
full_audio = np.concatenate([item for audio in all_audio for item in (audio, gap)])
|
23 |
+
|
24 |
+
# Save to temp file
|
25 |
+
sf.write(output_path, full_audio, sr)
|
26 |
+
return output_path
|
27 |
+
|
28 |
+
def evaluate_fitness(audio_path, text_embed):
|
29 |
+
"""Compute similarity between processed audio and text query."""
|
30 |
+
audio_embed = get_clap_embeddings_from_audio(audio_path)
|
31 |
+
return cosine_similarity([text_embed], [audio_embed])[0][0]
|
32 |
+
|
33 |
+
def apply_fx(audio_path, params, write_wav=True, output_dir="processed_audio"):
|
34 |
+
"""Apply EQ and Reverb to an audio file and return the modified file path."""
|
35 |
+
audio, sr = librosa.load(audio_path, sr=48000)
|
36 |
+
|
37 |
+
board = Pedalboard([
|
38 |
+
LowpassFilter(cutoff_frequency_hz=params['lowpass']),
|
39 |
+
HighpassFilter(cutoff_frequency_hz=params['highpass']),
|
40 |
+
Distortion(drive_db=params['drive_db']),
|
41 |
+
Bitcrush(bit_depth=params['bit_depth']),
|
42 |
+
Reverb(room_size=params['reverb_size'], wet_level=params['reverb_wet'])
|
43 |
+
])
|
44 |
+
processed_audio = board(audio, sr)
|
45 |
+
if write_wav:
|
46 |
+
# Determine output directory dynamically
|
47 |
+
base_dir = os.path.dirname(os.path.dirname(audio_path)) # Get 'dataset' level
|
48 |
+
output_dir = os.path.join(base_dir, output_dir)
|
49 |
+
|
50 |
+
# Ensure the output directory exists
|
51 |
+
os.makedirs(output_dir, exist_ok=True)
|
52 |
+
# Create new file path inside the processed_sounds directory
|
53 |
+
file_name = os.path.basename(audio_path).replace(".wav", "_processed.wav")
|
54 |
+
output_path = os.path.join(output_dir, file_name)
|
55 |
+
|
56 |
+
# Save processed audio
|
57 |
+
sf.write(output_path, processed_audio, sr)
|
58 |
+
return output_path
|
59 |
+
else:
|
60 |
+
return processed_audio
|
61 |
+
|
62 |
+
def objective_function(params, audio_file, text_embedding):
|
63 |
+
"""Objective function for Bayesian Optimization using the concatenated file."""
|
64 |
+
processed_audio = apply_fx(audio_file, {
|
65 |
+
"lowpass": params[0],
|
66 |
+
"highpass": params[1],
|
67 |
+
"reverb_size": params[2],
|
68 |
+
"reverb_wet": params[3],
|
69 |
+
"drive_db": params[4],
|
70 |
+
"bit_depth": params[5]
|
71 |
+
}, write_wav=True)
|
72 |
+
similarity = evaluate_fitness(processed_audio, text_embedding)
|
73 |
+
return -similarity # Minimize negative similarity (maximize similarity)
|
74 |
+
|
75 |
+
def get_params_dict(params_list):
|
76 |
+
return {
|
77 |
+
"lowpass cutoff (Hz)": params_list[0],
|
78 |
+
"highpass cutoff (Hz)": params_list[1],
|
79 |
+
"reverb size": params_list[2],
|
80 |
+
"reverb mix": params_list[3],
|
81 |
+
"distortion - gain_db": params_list[4],
|
82 |
+
"bitcrush - bit depth": params_list[5]
|
83 |
+
}
|
84 |
+
|
85 |
+
# Define parameter search space
|
86 |
+
search_space = [
|
87 |
+
Real(5000, 15000, name="lowpass"),
|
88 |
+
Real(50, 1000, name="highpass"),
|
89 |
+
Real(0.0, 0.8, name="reverb_size"),
|
90 |
+
Real(0.0, 0.8, name="reverb_wet"),
|
91 |
+
Real(0.0, 20.0, name="drive_db"),
|
92 |
+
Real(6.0, 32.0, name="bit_depth")
|
93 |
+
]
|
94 |
+
|
95 |
+
##### Main function #####
|
96 |
+
def get_fx(drum_kit, fx_prompt):
|
97 |
+
"""Optimize FX settings for the entire drum kit by using a concatenated audio file."""
|
98 |
+
text_embedding = get_clap_embeddings_from_text(fx_prompt)
|
99 |
+
|
100 |
+
# Concatenate all drum sounds
|
101 |
+
concat_file = concatenate_sounds(drum_kit)
|
102 |
+
|
103 |
+
# Define the objective function for the concatenated file
|
104 |
+
def obj_func(params):
|
105 |
+
return objective_function(params, concat_file, text_embedding)
|
106 |
+
|
107 |
+
# Run Bayesian optimization
|
108 |
+
res = gp_minimize(obj_func, search_space, n_calls=30, random_state=42)
|
109 |
+
best_params = res.x
|
110 |
+
|
111 |
+
# Apply the best FX parameters to each individual sound
|
112 |
+
optimized_kit = {}
|
113 |
+
for instrument, samples in drum_kit.items():
|
114 |
+
optimized_kit[instrument] = [apply_fx(sample, {
|
115 |
+
"lowpass": best_params[0],
|
116 |
+
"highpass": best_params[1],
|
117 |
+
"reverb_size": best_params[2],
|
118 |
+
"reverb_wet": best_params[3],
|
119 |
+
"drive_db": best_params[4],
|
120 |
+
"bit_depth": best_params[5]
|
121 |
+
}, write_wav=True) for sample in samples]
|
122 |
+
|
123 |
+
return optimized_kit, get_params_dict(best_params)
|
inference.py
CHANGED
@@ -8,7 +8,6 @@ import zipfile
|
|
8 |
import json
|
9 |
from transformers import ClapModel, ClapProcessor
|
10 |
import torch
|
11 |
-
import shutil
|
12 |
|
13 |
dataset_zip = "dataset/all_sounds.zip"
|
14 |
extracted_folder = "dataset/all_sounds"
|
@@ -65,6 +64,12 @@ def get_clap_embeddings_from_text(text):
|
|
65 |
text_embeddings = model.get_text_features(**inputs)
|
66 |
return text_embeddings.squeeze(0).numpy()
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
def find_top_sounds(text_embed, instrument, top_N=4):
|
69 |
"""Finds the closest N sounds for an instrument."""
|
70 |
valid_sounds = metadata[metadata["Instrument"] == instrument].index.tolist()
|
|
|
8 |
import json
|
9 |
from transformers import ClapModel, ClapProcessor
|
10 |
import torch
|
|
|
11 |
|
12 |
dataset_zip = "dataset/all_sounds.zip"
|
13 |
extracted_folder = "dataset/all_sounds"
|
|
|
64 |
text_embeddings = model.get_text_features(**inputs)
|
65 |
return text_embeddings.squeeze(0).numpy()
|
66 |
|
67 |
+
def get_clap_embeddings_from_audio(audio_path):
|
68 |
+
audio, sr = librosa.load(audio_path)
|
69 |
+
inputs = processor(audios=[audio], return_tensors="pt", sampling_rate=48000)
|
70 |
+
with torch.no_grad():
|
71 |
+
return model.get_audio_features(**inputs).squeeze(0).numpy()
|
72 |
+
|
73 |
def find_top_sounds(text_embed, instrument, top_N=4):
|
74 |
"""Finds the closest N sounds for an instrument."""
|
75 |
valid_sounds = metadata[metadata["Instrument"] == instrument].index.tolist()
|
requirements.txt
CHANGED
@@ -30,10 +30,12 @@ numba==0.61.0
|
|
30 |
numpy==2.1.3
|
31 |
packaging==24.2
|
32 |
pandas==2.2.3
|
|
|
33 |
pillow==11.1.0
|
34 |
platformdirs==4.3.6
|
35 |
pooch==1.8.2
|
36 |
protobuf==5.29.3
|
|
|
37 |
pyarrow==19.0.1
|
38 |
pycparser==2.22
|
39 |
pydeck==0.9.1
|
@@ -46,6 +48,7 @@ requests==2.32.3
|
|
46 |
rpds-py==0.23.1
|
47 |
safetensors==0.5.3
|
48 |
scikit-learn==1.6.1
|
|
|
49 |
scipy==1.15.2
|
50 |
six==1.17.0
|
51 |
smmap==5.0.2
|
|
|
30 |
numpy==2.1.3
|
31 |
packaging==24.2
|
32 |
pandas==2.2.3
|
33 |
+
pedalboard==0.9.16
|
34 |
pillow==11.1.0
|
35 |
platformdirs==4.3.6
|
36 |
pooch==1.8.2
|
37 |
protobuf==5.29.3
|
38 |
+
pyaml==25.1.0
|
39 |
pyarrow==19.0.1
|
40 |
pycparser==2.22
|
41 |
pydeck==0.9.1
|
|
|
48 |
rpds-py==0.23.1
|
49 |
safetensors==0.5.3
|
50 |
scikit-learn==1.6.1
|
51 |
+
scikit-optimize==0.10.2
|
52 |
scipy==1.15.2
|
53 |
six==1.17.0
|
54 |
smmap==5.0.2
|