Spaces:
Running
Running
Merge pull request #1 from argmaxinc/SW-202-remove-duplicates-from-multilingual-benchmarks
Browse files
main.py
CHANGED
|
@@ -113,26 +113,15 @@ model_to_multilingual_wer = dict(
|
|
| 113 |
zip(multilingual_df["Model"], multilingual_df["Average WER"])
|
| 114 |
)
|
| 115 |
|
| 116 |
-
# Copy over the multilingual WER to matching models
|
| 117 |
-
multilingual_models = {}
|
| 118 |
-
for multilingual_model, multilingual_wer in model_to_multilingual_wer.items():
|
| 119 |
-
for model in benchmark_df["model"].unique().tolist():
|
| 120 |
-
if model in model_to_multilingual_wer:
|
| 121 |
-
continue
|
| 122 |
-
if model == "openai/whisper-large-v3-v20240930/turbo/632MB":
|
| 123 |
-
multilingual_models[model] = model_to_multilingual_wer["openai/whisper-large-v3-v20240930"]
|
| 124 |
-
if model.endswith("/turbo") and model.replace("/turbo", "") in model_to_multilingual_wer:
|
| 125 |
-
multilingual_models[model] = model_to_multilingual_wer[model.replace("/turbo", "")]
|
| 126 |
-
elif multilingual_model in model and not model.endswith("en"):
|
| 127 |
-
multilingual_models[model] = multilingual_wer
|
| 128 |
-
|
| 129 |
-
# Update the dictionary with turbo models
|
| 130 |
-
model_to_multilingual_wer.update(multilingual_models)
|
| 131 |
-
|
| 132 |
# Add English WER and Multilingual WER to performance_df
|
| 133 |
benchmark_df["english_wer"] = benchmark_df["model"].map(model_to_english_wer)
|
| 134 |
benchmark_df["multilingual_wer"] = benchmark_df["model"].map(model_to_multilingual_wer)
|
| 135 |
-
benchmark_df.fillna({"multilingual_wer": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
benchmark_df["multilingual_wer"] = benchmark_df["multilingual_wer"].astype(str)
|
| 137 |
|
| 138 |
sorted_performance_df = (
|
|
|
|
| 113 |
zip(multilingual_df["Model"], multilingual_df["Average WER"])
|
| 114 |
)
|
| 115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
# Add English WER and Multilingual WER to performance_df
|
| 117 |
benchmark_df["english_wer"] = benchmark_df["model"].map(model_to_english_wer)
|
| 118 |
benchmark_df["multilingual_wer"] = benchmark_df["model"].map(model_to_multilingual_wer)
|
| 119 |
+
benchmark_df.fillna({"multilingual_wer": "N/A"}, inplace=True) # Mark all untested models as N/A
|
| 120 |
+
|
| 121 |
+
# Mark English-only models
|
| 122 |
+
english_only_mask = benchmark_df["model"].str.contains(r"\.en$|distil-whisper", case=False, na=False)
|
| 123 |
+
benchmark_df.loc[english_only_mask, "multilingual_wer"] = "English-only model"
|
| 124 |
+
|
| 125 |
benchmark_df["multilingual_wer"] = benchmark_df["multilingual_wer"].astype(str)
|
| 126 |
|
| 127 |
sorted_performance_df = (
|
utils.py
CHANGED
|
@@ -909,7 +909,7 @@ strong, b {
|
|
| 909 |
}
|
| 910 |
|
| 911 |
#release-dropdown {
|
| 912 |
-
width:
|
| 913 |
margin-left: 0px;
|
| 914 |
margin-right: auto;
|
| 915 |
}
|
|
|
|
| 909 |
}
|
| 910 |
|
| 911 |
#release-dropdown {
|
| 912 |
+
width: 17%;
|
| 913 |
margin-left: 0px;
|
| 914 |
margin-right: auto;
|
| 915 |
}
|