Spaces:
Running
Running
| import glob | |
| import json | |
| import os | |
| import shutil | |
| import sys | |
| import urllib | |
| from collections import defaultdict | |
| from datetime import datetime | |
| from statistics import mean | |
| import pandas as pd | |
| import requests | |
| from constants import BASE_WHISPERKIT_BENCHMARK_URL | |
| from text_normalizer import text_normalizer | |
| from utils import compute_average_wer, download_dataset | |
| def fetch_evaluation_data(url): | |
| """ | |
| Fetches evaluation data from the given URL. | |
| :param url: The URL to fetch the evaluation data from. | |
| :returns: The evaluation data as a dictionary. | |
| :rauses: sys.exit if the request fails | |
| """ | |
| response = requests.get(url) | |
| if response.status_code == 200: | |
| return json.loads(response.text) | |
| else: | |
| sys.exit(f"Failed to fetch WhisperKit evals: {response.text}") | |
| def generate_device_map(base_dir): | |
| """ | |
| Generates a mapping of device identifiers to their corresponding device models. | |
| This function iterates through all summary files in the specified base directory and its subdirectories, | |
| extracting device identifier and device model information. It stores this information in a dictionary, | |
| where the keys are device identifiers and the values are device models. | |
| :param base_dir: The base directory to search for summary files. | |
| :returns: A dictionary mapping device identifiers to device models. | |
| """ | |
| device_map = {} | |
| # Find all summary files recursively | |
| summary_files = glob.glob(f"{base_dir}/**/*summary*.json", recursive=True) | |
| for file_path in summary_files: | |
| try: | |
| with open(file_path, "r") as f: | |
| data = json.load(f) | |
| # Extract device information and create simple mapping | |
| if "deviceModel" in data and "deviceIdentifier" in data: | |
| device_map[data["deviceIdentifier"]] = data["deviceModel"] | |
| except json.JSONDecodeError: | |
| print(f"Error reading {file_path}") | |
| except Exception as e: | |
| print(f"Error processing {file_path}: {e}") | |
| # Save the device map to project root | |
| output_path = "dashboard_data/device_map.json" | |
| with open(output_path, "w") as f: | |
| json.dump(device_map, f, indent=4, sort_keys=True) | |
| return device_map | |
| def get_device_name(device): | |
| """ | |
| Gets the device name from the device map if it exists. | |
| :param device: String representing the device name. | |
| :returns: The device name from the device map if it exists, otherwise the input device name. | |
| """ | |
| with open("dashboard_data/device_map.json", "r") as f: | |
| device_map = json.load(f) | |
| return device_map.get(device, device).replace(" ", "_") | |
| def process_benchmark_file(file_path, dataset_dfs, results, releases): | |
| """ | |
| Processes a single benchmark file and updates the results dictionary. | |
| :param file_path: Path to the benchmark JSON file. | |
| :param dataset_dfs: Dictionary of DataFrames containing dataset information. | |
| :param results: Dictionary to store the processed results. | |
| This function reads a benchmark JSON file, extracts relevant information, | |
| and updates the results dictionary with various metrics including WER, | |
| speed, tokens per second, and quality of inference (QoI). | |
| """ | |
| with open(file_path, "r") as file: | |
| test_results = json.load(file) | |
| if len(test_results) == 0: | |
| return | |
| commit_hash_timestamp = file_path.split("/")[-2] | |
| commit_timestamp, commit_hash = commit_hash_timestamp.split("_") | |
| if commit_hash not in releases: | |
| return | |
| first_test_result = test_results[0] | |
| model = first_test_result["testInfo"]["model"] | |
| device = first_test_result["testInfo"]["device"] | |
| dataset_dir = first_test_result["testInfo"]["datasetDir"] | |
| if "iPhone" in device or "iPad" in device: | |
| version_numbers = first_test_result["staticAttributes"]["osVersion"].split(".") | |
| if len(version_numbers) == 3 and version_numbers[-1] == "0": | |
| version_numbers.pop() | |
| os_info = f"""{'iOS' if 'iPhone' in device else 'iPadOS'}_{".".join(version_numbers)}""" | |
| else: | |
| os_info = f"macOS_{first_test_result['staticAttributes']['osVersion']}" | |
| timestamp = first_test_result["testInfo"]["date"] | |
| key = (model, device, os_info, commit_timestamp) | |
| dataset_name = dataset_dir | |
| for test_result in test_results: | |
| test_info = test_result["testInfo"] | |
| audio_file_name = test_info["audioFile"] | |
| dataset_df = dataset_dfs[dataset_name] | |
| wer_entry = { | |
| "prediction": text_normalizer(test_info["prediction"]), | |
| "reference": text_normalizer(test_info["reference"]), | |
| } | |
| results[key]["timestamp"] = timestamp | |
| results[key]["average_wer"].append(wer_entry) | |
| input_audio_seconds = test_info["timings"]["inputAudioSeconds"] | |
| full_pipeline = test_info["timings"]["fullPipeline"] | |
| total_decoding_loops = test_info["timings"]["totalDecodingLoops"] | |
| results[key]["dataset_speed"][dataset_name][ | |
| "inputAudioSeconds" | |
| ] += input_audio_seconds | |
| results[key]["dataset_speed"][dataset_name]["fullPipeline"] += full_pipeline | |
| results[key]["speed"]["inputAudioSeconds"] += input_audio_seconds | |
| results[key]["speed"]["fullPipeline"] += full_pipeline | |
| results[key]["commit_hash"] = commit_hash | |
| results[key]["commit_timestamp"] = commit_timestamp | |
| results[key]["dataset_tokens_per_second"][dataset_name][ | |
| "totalDecodingLoops" | |
| ] += total_decoding_loops | |
| results[key]["dataset_tokens_per_second"][dataset_name][ | |
| "fullPipeline" | |
| ] += full_pipeline | |
| results[key]["tokens_per_second"]["totalDecodingLoops"] += total_decoding_loops | |
| results[key]["tokens_per_second"]["fullPipeline"] += full_pipeline | |
| audio = audio_file_name.split(".")[0] | |
| if dataset_name == "earnings22-10mins": | |
| audio = audio.split("-")[0] | |
| dataset_row = dataset_df.loc[dataset_df["file"].str.contains(audio)].iloc[0] | |
| reference_wer = dataset_row["wer"] | |
| prediction_wer = test_info["wer"] | |
| results[key]["qoi"].append(1 if prediction_wer <= reference_wer else 0) | |
| def process_summary_file(file_path, results, releases): | |
| """ | |
| Processes a summary file and updates the results dictionary with device support information. | |
| :param file_path: Path to the summary JSON file. | |
| :param results: Dictionary to store the processed results. | |
| This function reads a summary JSON file, extracts information about supported | |
| and failed models for a specific device and OS combination, and updates the | |
| results dictionary accordingly. | |
| """ | |
| with open(file_path, "r") as file: | |
| summary_data = json.load(file) | |
| if summary_data["commitHash"] not in releases: | |
| return | |
| device = summary_data["deviceIdentifier"] | |
| os = f"{'iPadOS' if 'iPad' in device else summary_data['osType']} {summary_data['osVersion']}" | |
| commit_timestamp = summary_data["commitTimestamp"] | |
| key = (device, os) | |
| if key in results: | |
| existing_timestamp = results[key]["commitTimestamp"] | |
| existing_dt = datetime.strptime(existing_timestamp, "%Y-%m-%dT%H%M%S") | |
| new_dt = datetime.strptime(commit_timestamp, "%Y-%m-%dT%H%M%S") | |
| if new_dt <= existing_dt: | |
| return | |
| else: | |
| results[key] = {} | |
| supported_models = set(summary_data["modelsTested"]) | |
| failed_models = set() | |
| dataset_count = 2 | |
| for model, value in summary_data["testResults"].items(): | |
| if model not in summary_data["failureInfo"]: | |
| dataset_count = len(value) | |
| break | |
| for failed_model in summary_data["failureInfo"]: | |
| if ( | |
| failed_model in summary_data["testResults"] | |
| and len(summary_data["testResults"][failed_model]) == dataset_count | |
| ): | |
| continue | |
| supported_models.discard(failed_model) | |
| failed_models.add(failed_model) | |
| results[key]["supportedModels"] = supported_models | |
| results[key]["commitTimestamp"] = commit_timestamp | |
| results[key]["failedModels"] = (failed_models, file_path) | |
| results["modelsTested"] |= supported_models | |
| results["devices"].add(device) | |
| def calculate_and_save_performance_results( | |
| performance_results, performance_output_path | |
| ): | |
| """ | |
| Calculates final performance metrics and saves them to a JSON file. | |
| :param performance_results: Dictionary containing raw performance data. | |
| :param performance_output_path: Path to save the processed performance results. | |
| This function processes the raw performance data, calculates average metrics, | |
| and writes the final results to a JSON file, with each entry representing | |
| a unique combination of model, device, and OS. | |
| """ | |
| not_supported = [] | |
| with open(performance_output_path, "w") as performance_file: | |
| for key, data in performance_results.items(): | |
| model, device, os_info, timestamp = key | |
| speed = round( | |
| data["speed"]["inputAudioSeconds"] / data["speed"]["fullPipeline"], 2 | |
| ) | |
| if speed < 1.0: | |
| not_supported.append((model, device, os_info)) | |
| continue | |
| performance_entry = { | |
| "model": model.replace("_", "/"), | |
| "device": get_device_name(device).replace("_", " "), | |
| "os": os_info.replace("_", " "), | |
| "timestamp": data["timestamp"], | |
| "speed": speed, | |
| "tokens_per_second": round( | |
| data["tokens_per_second"]["totalDecodingLoops"] | |
| / data["tokens_per_second"]["fullPipeline"], | |
| 2, | |
| ), | |
| "dataset_speed": { | |
| dataset: round( | |
| speed_info["inputAudioSeconds"] / speed_info["fullPipeline"], 2 | |
| ) | |
| for dataset, speed_info in data["dataset_speed"].items() | |
| }, | |
| "dataset_tokens_per_second": { | |
| dataset: round( | |
| tps_info["totalDecodingLoops"] / tps_info["fullPipeline"], 2 | |
| ) | |
| for dataset, tps_info in data["dataset_tokens_per_second"].items() | |
| }, | |
| "average_wer": compute_average_wer(data["average_wer"]), | |
| "qoi": round(mean(data["qoi"]), 2), | |
| "commit_hash": data["commit_hash"], | |
| "commit_timestamp": data["commit_timestamp"], | |
| } | |
| json.dump(performance_entry, performance_file) | |
| performance_file.write("\n") | |
| return not_supported | |
| def calculate_and_save_support_results( | |
| support_results, not_supported, support_output_path | |
| ): | |
| """ | |
| Calculates device support results and saves them to a CSV file. | |
| :param support_results: Dictionary containing device support information. | |
| :param support_output_path: Path to save the processed support results. | |
| This function processes the device support data and creates a CSV file | |
| showing which models are supported on different devices and OS versions, | |
| using checkmarks, warning signs, quesiton marks or Not supported to | |
| indicate support status. | |
| """ | |
| all_models = sorted(support_results["modelsTested"]) | |
| all_devices = sorted(set(support_results["devices"])) | |
| df = pd.DataFrame(index=all_models, columns=["Model"] + all_devices) | |
| for model in all_models: | |
| row = {"Model": model} | |
| for device in all_devices: | |
| row[device] = "" | |
| for key, data in support_results.items(): | |
| if key in ["modelsTested", "devices"]: | |
| continue | |
| (device, os) = key | |
| supported_models = data["supportedModels"] | |
| failed_models, file_path = data["failedModels"] | |
| directories = file_path.split("/") | |
| commit_file, summary_file = directories[-2], directories[-1] | |
| url = f"{BASE_WHISPERKIT_BENCHMARK_URL}/{commit_file}/{urllib.parse.quote(summary_file)}" | |
| if model in supported_models: | |
| current_value = row[device] | |
| new_value = ( | |
| f"✅ {os}" | |
| if current_value == "" | |
| else f"{current_value}<p>✅ {os}</p>" | |
| ) | |
| elif model in failed_models: | |
| current_value = row[device] | |
| new_value = ( | |
| f"""⚠️ <a style='color: #3B82F6; text-decoration: underline; text-decoration-style: dotted;' href={url}>{os}</a>""" | |
| if current_value == "" | |
| else f"""{current_value}<p>⚠️ <a style='color: #3B82F6; text-decoration: underline; text-decoration-style: dotted;' href={url}>{os}</a></p>""" | |
| ) | |
| else: | |
| current_value = row[device] | |
| new_value = ( | |
| f"? {os}" | |
| if current_value == "" | |
| else f"{current_value}<p>? {os}</p>" | |
| ) | |
| row[device] = new_value | |
| df.loc[model] = row | |
| remove_unsupported_cells(df, not_supported) | |
| cols = df.columns.tolist() | |
| cols = ["Model"] + [ | |
| get_device_name(col).replace("_", " ") for col in cols if col != "Model" | |
| ] | |
| df.columns = cols | |
| df.to_csv(support_output_path, index=True) | |
| def remove_unsupported_cells(df, not_supported): | |
| """ | |
| Updates the DataFrame to mark unsupported model-device combinations. | |
| This function reads a configuration file to determine which models are supported | |
| on which devices. It then iterates over the DataFrame and sets the value to "Not supported" | |
| for any model-device combination that is not supported according to the configuration. | |
| :param df: A Pandas DataFrame where the index represents models and columns represent devices. | |
| """ | |
| with open("dashboard_data/config.json", "r") as file: | |
| config_data = json.load(file) | |
| device_support = config_data["device_support"] | |
| for info in device_support: | |
| identifiers = set(info["identifiers"]) | |
| supported = set(info["models"]["supported"]) | |
| for model in df.index: | |
| for device in df.columns: | |
| if ( | |
| any(identifier in device for identifier in identifiers) | |
| and model not in supported | |
| ): | |
| df.at[model, device] = "Not Supported" | |
| for model, device, os in not_supported: | |
| df.at[model, device] = "Not Supported" | |
| def main(): | |
| """ | |
| Main function to orchestrate the performance data generation process. | |
| This function performs the following steps: | |
| 1. Downloads benchmark data if requested. | |
| 2. Fetches evaluation data for various datasets. | |
| 3. Processes benchmark files and summary files. | |
| 4. Calculates and saves performance and support results. | |
| """ | |
| source_xcresult_repo = "argmaxinc/whisperkit-evals-dataset" | |
| source_xcresult_subfolder = "benchmark_data/" | |
| source_xcresult_directory = f"{source_xcresult_repo}/{source_xcresult_subfolder}" | |
| if len(sys.argv) > 1 and sys.argv[1] == "download": | |
| try: | |
| shutil.rmtree(source_xcresult_repo) | |
| except: | |
| print("Nothing to remove.") | |
| download_dataset( | |
| source_xcresult_repo, source_xcresult_repo, source_xcresult_subfolder | |
| ) | |
| datasets = { | |
| "Earnings-22": "https://huggingface.co/datasets/argmaxinc/whisperkit-evals/resolve/main/WhisperOpenAIAPI/openai_whisper-large-v2/earnings22/2024-03-04_13%3A39%3A42_GMT-0800.json", | |
| "LibriSpeech": "https://huggingface.co/datasets/argmaxinc/whisperkit-evals/resolve/main/WhisperOpenAIAPI/openai_whisper-large-v2/librispeech/2024-02-28_18%3A45%3A02_GMT-0800.json?download=true", | |
| "earnings22-10mins": "https://huggingface.co/datasets/argmaxinc/whisperkit-evals/resolve/main/WhisperOpenAIAPI/openai_whisper-large-v2/earnings22/2024-03-04_13%3A39%3A42_GMT-0800.json", | |
| "librispeech-10mins": "https://huggingface.co/datasets/argmaxinc/whisperkit-evals/resolve/main/WhisperOpenAIAPI/openai_whisper-large-v2/librispeech/2024-02-28_18%3A45%3A02_GMT-0800.json?download=true", | |
| "earnings22-12hours": "https://huggingface.co/datasets/argmaxinc/whisperkit-evals/resolve/main/WhisperOpenAIAPI/openai_whisper-large-v2/earnings22/2024-03-04_13%3A39%3A42_GMT-0800.json", | |
| "librispeech": "https://huggingface.co/datasets/argmaxinc/whisperkit-evals/resolve/main/WhisperOpenAIAPI/openai_whisper-large-v2/librispeech/2024-02-28_18%3A45%3A02_GMT-0800.json?download=true", | |
| } | |
| dataset_dfs = {} | |
| for dataset_name, url in datasets.items(): | |
| evals = fetch_evaluation_data(url) | |
| dataset_dfs[dataset_name] = pd.json_normalize(evals["results"]) | |
| performance_results = defaultdict( | |
| lambda: { | |
| "average_wer": [], | |
| "qoi": [], | |
| "speed": {"inputAudioSeconds": 0, "fullPipeline": 0}, | |
| "tokens_per_second": {"totalDecodingLoops": 0, "fullPipeline": 0}, | |
| "dataset_speed": defaultdict( | |
| lambda: {"inputAudioSeconds": 0, "fullPipeline": 0} | |
| ), | |
| "dataset_tokens_per_second": defaultdict( | |
| lambda: {"totalDecodingLoops": 0, "fullPipeline": 0} | |
| ), | |
| "timestamp": None, | |
| "commit_hash": None, | |
| "commit_timestamp": None, | |
| } | |
| ) | |
| support_results = {"modelsTested": set(), "devices": set()} | |
| generate_device_map(source_xcresult_directory) | |
| with open("dashboard_data/version.json", "r") as f: | |
| version = json.load(f) | |
| releases = set(version["releases"]) | |
| for subdir, _, files in os.walk(source_xcresult_directory): | |
| for filename in files: | |
| file_path = os.path.join(subdir, filename) | |
| if not filename.endswith(".json"): | |
| continue | |
| elif "summary" in filename: | |
| process_summary_file(file_path, support_results, releases) | |
| else: | |
| process_benchmark_file(file_path, dataset_dfs, performance_results, releases) | |
| not_supported = calculate_and_save_performance_results( | |
| performance_results, "dashboard_data/performance_data.json" | |
| ) | |
| calculate_and_save_support_results( | |
| support_results, not_supported, "dashboard_data/support_data.csv" | |
| ) | |
| if __name__ == "__main__": | |
| main() | |