File size: 27,765 Bytes
7762f99 a69bbb8 7762f99 2b4b309 7762f99 90e8636 e4b6cc5 19f20a1 6fc91c7 c1b3b74 f9bfc2d a69bbb8 7762f99 2b4b309 7762f99 f04dfa8 c1b3b74 9ac3da0 5afa3f9 f04dfa8 fd936a6 c1b3b74 6fc91c7 0d28c87 7762f99 0d28c87 9ac3da0 0d28c87 90e8636 7762f99 8571d5a c1b3b74 5afa3f9 c1b3b74 2723bd3 2b4b309 6fc91c7 2b4b309 2723bd3 5afa3f9 cb05c15 2723bd3 2b4b309 19f20a1 0d28c87 2eb6d1a 5829740 0d28c87 5afa3f9 0d28c87 19f20a1 8571d5a 19f20a1 7762f99 c1b3b74 2b4b309 c1b3b74 d7a6ff4 c1b3b74 d7a6ff4 c1b3b74 d7a6ff4 c1b3b74 d7a6ff4 c1b3b74 8571d5a c1b3b74 d7a6ff4 c1b3b74 d7a6ff4 8571d5a d7a6ff4 c1b3b74 8571d5a d7a6ff4 c1b3b74 d7a6ff4 c1b3b74 489b632 c1b3b74 489b632 d7a6ff4 c1b3b74 d7a6ff4 c1b3b74 d7a6ff4 c1b3b74 d7a6ff4 c1b3b74 8571d5a c1b3b74 d7a6ff4 c1b3b74 2b4b309 2723bd3 c1b3b74 2723bd3 c1b3b74 e4b6cc5 2723bd3 19f20a1 2723bd3 19f20a1 0fcd4d1 19f20a1 f9bfc2d 0fcd4d1 7762f99 0fcd4d1 b59b354 19f20a1 0fcd4d1 19f20a1 b59b354 19f20a1 0fcd4d1 9d42898 0fcd4d1 19f20a1 0fcd4d1 7762f99 2b4b309 90e8636 67fa2ba 0fcd4d1 67fa2ba 5ade45a 0fcd4d1 a69bbb8 5ade45a a69bbb8 4883d00 a69bbb8 5ade45a a69bbb8 0fcd4d1 a69bbb8 5fca25d f04dfa8 90e8636 936a4d8 fd936a6 318e969 fd936a6 ce95000 936a4d8 ce95000 a69bbb8 ce95000 a69bbb8 fd936a6 2723bd3 0d28c87 8d5d65f 69a533b 9ac3da0 8d5d65f 9ac3da0 7a3ba19 9ac3da0 c7f7750 0d28c87 c7eeb02 0d28c87 8d5d65f 6a4ac56 5afa3f9 8d5d65f 8571d5a 90e8636 0d28c87 c1b3b74 5afa3f9 6a4ac56 0d28c87 40e000b 75f9ac3 6a4ac56 c7eeb02 6a4ac56 0d28c87 7a3ba19 0d28c87 7a3ba19 0d28c87 75f9ac3 0d28c87 7762f99 75f9ac3 0d28c87 b000e50 0d28c87 6a4ac56 0d28c87 6a4ac56 0d28c87 7762f99 cea3391 7762f99 6748d56 7762f99 6a4ac56 c1b3b74 5afa3f9 6a4ac56 19f20a1 69d2e17 9d1a2d6 7762f99 05175ea 7762f99 ed40758 f04dfa8 9d1a2d6 3c4475e f04dfa8 0d28c87 9d1a2d6 7762f99 f04dfa8 9d1a2d6 b000e50 a69bbb8 8bedfed a69bbb8 a278ba6 a69bbb8 7a3ba19 7762f99 b000e50 9d1a2d6 19f20a1 6a4ac56 9d1a2d6 19f20a1 0fcd4d1 7762f99 19f20a1 0fcd4d1 19f20a1 7762f99 19f20a1 89cbf51 19f20a1 89cbf51 753af07 a69bbb8 67fa2ba a69bbb8 0fcd4d1 9b4773a 7762f99 0d28c87 9d1a2d6 7762f99 fd936a6 0d28c87 ce95000 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 |
import ast
import io
from typing import Dict, List, Union
import argilla as rg
import gradio as gr
import pandas as pd
from datasets import Dataset
from distilabel.distiset import Distiset
from distilabel.steps.tasks.text_generation import TextGeneration
from gradio.oauth import OAuthToken
from huggingface_hub import upload_file
from huggingface_hub.hf_api import HfApi
from src.distilabel_dataset_generator.pipelines.embeddings import (
get_embeddings,
get_sentence_embedding_dimensions,
)
from src.distilabel_dataset_generator.pipelines.sft import (
DEFAULT_BATCH_SIZE,
DEFAULT_DATASET_DESCRIPTIONS,
DEFAULT_DATASETS,
DEFAULT_SYSTEM_PROMPTS,
PROMPT_CREATION_PROMPT,
generate_pipeline_code,
get_magpie_generator,
get_prompt_generator,
get_response_generator,
)
from src.distilabel_dataset_generator.utils import (
get_argilla_client,
get_login_button,
get_org_dropdown,
swap_visibilty,
)
def convert_to_list_of_dicts(messages: str) -> List[Dict[str, str]]:
return ast.literal_eval(
messages.replace("'user'}", "'user'},")
.replace("'system'}", "'system'},")
.replace("'assistant'}", "'assistant'},")
)
def generate_system_prompt(dataset_description, progress=gr.Progress()):
progress(0.0, desc="Generating system prompt")
if dataset_description in DEFAULT_DATASET_DESCRIPTIONS:
index = DEFAULT_DATASET_DESCRIPTIONS.index(dataset_description)
if index < len(DEFAULT_SYSTEM_PROMPTS):
return DEFAULT_SYSTEM_PROMPTS[index]
progress(0.3, desc="Initializing text generation")
generate_description: TextGeneration = get_prompt_generator()
progress(0.7, desc="Generating system prompt")
result = next(
generate_description.process(
[
{
"system_prompt": PROMPT_CREATION_PROMPT,
"instruction": dataset_description,
}
]
)
)[0]["generation"]
progress(1.0, desc="System prompt generated")
return result
def generate_sample_dataset(system_prompt, progress=gr.Progress()):
if system_prompt in DEFAULT_SYSTEM_PROMPTS:
index = DEFAULT_SYSTEM_PROMPTS.index(system_prompt)
if index < len(DEFAULT_DATASETS):
return DEFAULT_DATASETS[index]
result = generate_dataset(
system_prompt, num_turns=1, num_rows=1, progress=progress, is_sample=True
)
return result
def _check_push_to_hub(org_name, repo_name):
repo_id = (
f"{org_name}/{repo_name}"
if repo_name is not None and org_name is not None
else None
)
if repo_id is not None:
if not all([repo_id, org_name, repo_name]):
raise gr.Error(
"Please provide a `repo_name` and `org_name` to push the dataset to."
)
return repo_id
def generate_dataset(
system_prompt: str,
num_turns: int = 1,
num_rows: int = 5,
is_sample: bool = False,
progress=gr.Progress(),
) -> pd.DataFrame:
progress(0.0, desc="(1/2) Generating instructions")
magpie_generator = get_magpie_generator(
num_turns, num_rows, system_prompt, is_sample
)
response_generator = get_response_generator(num_turns, system_prompt, is_sample)
total_steps: int = num_rows * 2
batch_size = DEFAULT_BATCH_SIZE
# create instructions
n_processed = 0
magpie_results = []
while n_processed < num_rows:
progress(
0.5 * n_processed / num_rows,
total=total_steps,
desc="(1/2) Generating instructions",
)
remaining_rows = num_rows - n_processed
batch_size = min(batch_size, remaining_rows)
inputs = [{"system_prompt": system_prompt} for _ in range(batch_size)]
batch = list(magpie_generator.process(inputs=inputs))
magpie_results.extend(batch[0])
n_processed += batch_size
progress(0.5, desc="(1/2) Generating instructions")
# generate responses
n_processed = 0
response_results = []
if num_turns == 1:
while n_processed < num_rows:
progress(
0.5 + 0.5 * n_processed / num_rows,
total=total_steps,
desc="(2/2) Generating responses",
)
batch = magpie_results[n_processed : n_processed + batch_size]
responses = list(response_generator.process(inputs=batch))
response_results.extend(responses[0])
n_processed += batch_size
for result in response_results:
result["prompt"] = result["instruction"]
result["completion"] = result["generation"]
result["system_prompt"] = system_prompt
else:
for result in magpie_results:
result["conversation"].insert(
0, {"role": "system", "content": system_prompt}
)
result["messages"] = result["conversation"]
while n_processed < num_rows:
progress(
0.5 + 0.5 * n_processed / num_rows,
total=total_steps,
desc="(2/2) Generating responses",
)
batch = magpie_results[n_processed : n_processed + batch_size]
responses = list(response_generator.process(inputs=batch))
response_results.extend(responses[0])
n_processed += batch_size
for result in response_results:
result["messages"].append(
{"role": "assistant", "content": result["generation"]}
)
progress(
1,
total=total_steps,
desc="(2/2) Generating responses",
)
# create distiset
distiset_results = []
for result in response_results:
record = {}
for relevant_keys in [
"messages",
"prompt",
"completion",
"model_name",
"system_prompt",
]:
if relevant_keys in result:
record[relevant_keys] = result[relevant_keys]
distiset_results.append(record)
distiset = Distiset(
{
"default": Dataset.from_list(distiset_results),
}
)
# If not pushing to hub generate the dataset directly
distiset = distiset["default"]
if num_turns == 1:
outputs = distiset.to_pandas()[["system_prompt", "prompt", "completion"]]
else:
outputs = distiset.to_pandas()[["messages"]]
dataframe = pd.DataFrame(outputs)
progress(1.0, desc="Dataset generation completed")
return dataframe
def push_to_hub(
dataframe: pd.DataFrame,
private: bool = True,
org_name: str = None,
repo_name: str = None,
oauth_token: Union[OAuthToken, None] = None,
progress=gr.Progress(),
) -> pd.DataFrame:
original_dataframe = dataframe.copy(deep=True)
if "messages" in dataframe.columns:
dataframe["messages"] = dataframe["messages"].apply(
lambda x: convert_to_list_of_dicts(x) if isinstance(x, str) else x
)
progress(0.1, desc="Setting up dataset")
repo_id = _check_push_to_hub(org_name, repo_name)
distiset = Distiset(
{
"default": Dataset.from_pandas(dataframe),
}
)
progress(0.2, desc="Pushing dataset to hub")
distiset.push_to_hub(
repo_id=repo_id,
private=private,
include_script=False,
token=oauth_token.token,
create_pr=False,
)
progress(1.0, desc="Dataset pushed to hub")
return original_dataframe
def push_to_argilla(
dataframe: pd.DataFrame,
dataset_name: str,
oauth_token: Union[OAuthToken, None] = None,
progress=gr.Progress(),
) -> pd.DataFrame:
original_dataframe = dataframe.copy(deep=True)
if "messages" in dataframe.columns:
dataframe["messages"] = dataframe["messages"].apply(
lambda x: convert_to_list_of_dicts(x) if isinstance(x, str) else x
)
try:
progress(0.1, desc="Setting up user and workspace")
client = get_argilla_client()
hf_user = HfApi().whoami(token=oauth_token.token)["name"]
# Create user if it doesn't exist
rg_user = client.users(username=hf_user)
if rg_user is None:
rg_user = client.users.add(rg.User(username=hf_user, role="admin"))
# Create workspace if it doesn't exist
workspace = client.workspaces(name=rg_user.username)
if workspace is None:
workspace = client.workspaces.add(rg.Workspace(name=rg_user.username))
workspace.add_user(rg_user)
if "messages" in dataframe.columns:
settings = rg.Settings(
fields=[
rg.ChatField(
name="messages",
description="The messages in the conversation",
title="Messages",
),
],
questions=[
rg.RatingQuestion(
name="rating",
title="Rating",
description="The rating of the conversation",
values=list(range(1, 6)),
),
],
metadata=[
rg.IntegerMetadataProperty(
name="user_message_length", title="User Message Length"
),
rg.IntegerMetadataProperty(
name="assistant_message_length",
title="Assistant Message Length",
),
],
vectors=[
rg.VectorField(
name="messages_embeddings",
dimensions=get_sentence_embedding_dimensions(),
)
],
guidelines="Please review the conversation and provide a score for the assistant's response.",
)
dataframe["user_message_length"] = dataframe["messages"].apply(
lambda x: sum([len(y["content"]) for y in x if y["role"] == "user"])
)
dataframe["assistant_message_length"] = dataframe["messages"].apply(
lambda x: sum(
[len(y["content"]) for y in x if y["role"] == "assistant"]
)
)
dataframe["messages_embeddings"] = get_embeddings(
dataframe["messages"].apply(
lambda x: " ".join([y["content"] for y in x])
)
)
else:
settings = rg.Settings(
fields=[
rg.TextField(
name="system_prompt",
title="System Prompt",
description="The system prompt used for the conversation",
required=False,
),
rg.TextField(
name="prompt",
title="Prompt",
description="The prompt used for the conversation",
),
rg.TextField(
name="completion",
title="Completion",
description="The completion from the assistant",
),
],
questions=[
rg.RatingQuestion(
name="rating",
title="Rating",
description="The rating of the conversation",
values=list(range(1, 6)),
),
],
metadata=[
rg.IntegerMetadataProperty(
name="prompt_length", title="Prompt Length"
),
rg.IntegerMetadataProperty(
name="completion_length", title="Completion Length"
),
],
vectors=[
rg.VectorField(
name="prompt_embeddings",
dimensions=get_sentence_embedding_dimensions(),
)
],
guidelines="Please review the conversation and correct the prompt and completion where needed.",
)
dataframe["prompt_length"] = dataframe["prompt"].apply(len)
dataframe["completion_length"] = dataframe["completion"].apply(len)
dataframe["prompt_embeddings"] = get_embeddings(dataframe["prompt"])
progress(0.5, desc="Creating dataset")
rg_dataset = client.datasets(name=dataset_name, workspace=rg_user.username)
if rg_dataset is None:
rg_dataset = rg.Dataset(
name=dataset_name,
workspace=rg_user.username,
settings=settings,
client=client,
)
rg_dataset = rg_dataset.create()
progress(0.7, desc="Pushing dataset to Argilla")
hf_dataset = Dataset.from_pandas(dataframe)
rg_dataset.records.log(records=hf_dataset)
progress(1.0, desc="Dataset pushed to Argilla")
except Exception as e:
raise gr.Error(f"Error pushing dataset to Argilla: {e}")
return original_dataframe
def validate_argilla_dataset_name(
dataset_name: str,
final_dataset: pd.DataFrame,
add_to_existing_dataset: bool,
oauth_token: Union[OAuthToken, None] = None,
progress=gr.Progress(),
) -> str:
progress(0, desc="Validating dataset configuration")
hf_user = HfApi().whoami(token=oauth_token.token)["name"]
client = get_argilla_client()
if dataset_name is None or dataset_name == "":
raise gr.Error("Dataset name is required")
dataset = client.datasets(name=dataset_name, workspace=hf_user)
if dataset and not add_to_existing_dataset:
raise gr.Error(f"Dataset {dataset_name} already exists")
return final_dataset
def upload_pipeline_code(
pipeline_code,
org_name,
repo_name,
oauth_token: Union[OAuthToken, None] = None,
progress=gr.Progress(),
):
repo_id = _check_push_to_hub(org_name, repo_name)
progress(0.1, desc="Uploading pipeline code")
with io.BytesIO(pipeline_code.encode("utf-8")) as f:
upload_file(
path_or_fileobj=f,
path_in_repo="pipeline.py",
repo_id=repo_id,
repo_type="dataset",
token=oauth_token.token,
commit_message="Include pipeline script",
create_pr=False,
)
progress(1.0, desc="Pipeline code uploaded")
css = """
.main_ui_logged_out{opacity: 0.3; pointer-events: none}
"""
with gr.Blocks(
title="🧬 Synthetic Data Generator",
head="🧬 Synthetic Data Generator",
css=css,
) as app:
with gr.Row():
gr.Markdown(
"Want to run this locally or with other LLMs? Take a look at the FAQ tab. distilabel Synthetic Data Generator is free, we use the authentication token to push the dataset to the Hugging Face Hub and not for data generation."
)
with gr.Row():
gr.Column()
get_login_button()
gr.Column()
gr.Markdown("## Iterate on a sample dataset")
with gr.Column() as main_ui:
dataset_description = gr.TextArea(
label="Give a precise description of the assistant or tool. Don't describe the dataset",
value=DEFAULT_DATASET_DESCRIPTIONS[0],
lines=2,
)
examples = gr.Examples(
elem_id="system_prompt_examples",
examples=[[example] for example in DEFAULT_DATASET_DESCRIPTIONS],
inputs=[dataset_description],
)
with gr.Row():
gr.Column(scale=1)
btn_generate_system_prompt = gr.Button(
value="Generate system prompt and sample dataset"
)
gr.Column(scale=1)
system_prompt = gr.TextArea(
label="System prompt for dataset generation. You can tune it and regenerate the sample",
value=DEFAULT_SYSTEM_PROMPTS[0],
lines=5,
)
with gr.Row():
sample_dataset = gr.Dataframe(
value=DEFAULT_DATASETS[0],
label="Sample dataset. Prompts and completions truncated to 256 tokens.",
interactive=False,
wrap=True,
)
with gr.Row():
gr.Column(scale=1)
btn_generate_sample_dataset = gr.Button(
value="Generate sample dataset",
)
gr.Column(scale=1)
result = btn_generate_system_prompt.click(
fn=generate_system_prompt,
inputs=[dataset_description],
outputs=[system_prompt],
show_progress=True,
).then(
fn=generate_sample_dataset,
inputs=[system_prompt],
outputs=[sample_dataset],
show_progress=True,
)
btn_generate_sample_dataset.click(
fn=generate_sample_dataset,
inputs=[system_prompt],
outputs=[sample_dataset],
show_progress=True,
)
# Add a header for the full dataset generation section
gr.Markdown("## Generate full dataset")
gr.Markdown(
"Once you're satisfied with the sample, generate a larger dataset and push it to Argilla or the Hugging Face Hub."
)
with gr.Column() as push_to_hub_ui:
with gr.Row(variant="panel"):
num_turns = gr.Number(
value=1,
label="Number of turns in the conversation",
minimum=1,
maximum=4,
step=1,
info="Choose between 1 (single turn with 'instruction-response' columns) and 2-4 (multi-turn conversation with a 'messages' column).",
)
num_rows = gr.Number(
value=10,
label="Number of rows in the dataset",
minimum=1,
maximum=500,
info="The number of rows in the dataset. Note that you are able to generate more rows at once but that this will take time.",
)
with gr.Tab(label="Argilla"):
if get_argilla_client() is not None:
with gr.Row(variant="panel"):
dataset_name = gr.Textbox(
label="Dataset name",
placeholder="dataset_name",
value="my-distiset",
)
add_to_existing_dataset = gr.Checkbox(
label="Allow adding records to existing dataset",
info="When selected, you do need to ensure the number of turns in the conversation is the same as the number of turns in the existing dataset.",
value=False,
interactive=True,
scale=0.5,
)
with gr.Row(variant="panel"):
btn_generate_full_dataset_copy = gr.Button(
value="Generate", variant="primary", scale=2
)
btn_generate_and_push_to_argilla = gr.Button(
value="Generate and Push to Argilla",
variant="primary",
scale=2,
)
btn_push_to_argilla = gr.Button(
value="Push to Argilla", variant="primary", scale=2
)
else:
gr.Markdown(
"Please add `ARGILLA_API_URL` and `ARGILLA_API_KEY` to use Argilla or export the dataset to the Hugging Face Hub."
)
with gr.Tab("Hugging Face Hub"):
with gr.Row(variant="panel"):
org_name = get_org_dropdown()
repo_name = gr.Textbox(
label="Repo name",
placeholder="dataset_name",
value="my-distiset",
)
private = gr.Checkbox(
label="Private dataset",
value=True,
interactive=True,
scale=0.5,
)
with gr.Row(variant="panel"):
btn_generate_full_dataset = gr.Button(
value="Generate", variant="primary", scale=2
)
btn_generate_and_push_to_hub = gr.Button(
value="Generate and Push to Hub", variant="primary", scale=2
)
btn_push_to_hub = gr.Button(
value="Push to Hub", variant="primary", scale=2
)
with gr.Row():
final_dataset = gr.Dataframe(
value=DEFAULT_DATASETS[0],
label="Generated dataset",
interactive=False,
wrap=True,
)
with gr.Row():
success_message = gr.Markdown(visible=False)
def show_success_message_argilla():
client = get_argilla_client()
argilla_api_url = client.api_url
return gr.Markdown(
value=f"""
<div style="padding: 1em; background-color: #e6f3e6; border-radius: 5px; margin-top: 1em;">
<h3 style="color: #2e7d32; margin: 0;">Dataset Published Successfully!</h3>
<p style="margin-top: 0.5em;">
Your dataset is now available at:
<a href="{argilla_api_url}" target="_blank" style="color: #1565c0; text-decoration: none;">
{argilla_api_url}
</a>
<br>Unfamiliar with Argilla? Here are some docs to help you get started:
<br>• <a href="https://docs.argilla.io/latest/how_to_guides/annotate/" target="_blank">How to curate data in Argilla</a>
<br>• <a href="https://docs.argilla.io/latest/how_to_guides/import_export/" target="_blank">How to export data once you have reviewed the dataset</a>
</p>
</div>
""",
visible=True,
)
def show_success_message_hub(org_name, repo_name):
return gr.Markdown(
value=f"""
<div style="padding: 1em; background-color: #e6f3e6; border-radius: 5px; margin-top: 1em;">
<h3 style="color: #2e7d32; margin: 0;">Dataset Published Successfully!</h3>
<p style="margin-top: 0.5em;">
The generated dataset is in the right format for fine-tuning with TRL, AutoTrain or other frameworks.
Your dataset is now available at:
<a href="https://huggingface.co/datasets/{org_name}/{repo_name}" target="_blank" style="color: #1565c0; text-decoration: none;">
https://huggingface.co/datasets/{org_name}/{repo_name}
</a>
</p>
</div>
""",
visible=True,
)
def hide_success_message():
return gr.Markdown(visible=False)
gr.Markdown("## Or run this pipeline locally with distilabel")
gr.Markdown(
"You can run this pipeline locally with distilabel. For more information, please refer to the [distilabel documentation](https://distilabel.argilla.io/) or go to the FAQ tab at the top of the page for more information."
)
with gr.Accordion(
"Run this pipeline using distilabel",
open=False,
):
pipeline_code = gr.Code(
value=generate_pipeline_code(
system_prompt.value, num_turns.value, num_rows.value
),
language="python",
label="Distilabel Pipeline Code",
)
sample_dataset.change(
fn=lambda x: x,
inputs=[sample_dataset],
outputs=[final_dataset],
)
gr.on(
triggers=[
btn_generate_full_dataset.click,
btn_generate_full_dataset_copy.click,
],
fn=hide_success_message,
outputs=[success_message],
).then(
fn=generate_dataset,
inputs=[system_prompt, num_turns, num_rows],
outputs=[final_dataset],
show_progress=True,
)
btn_generate_and_push_to_argilla.click(
fn=validate_argilla_dataset_name,
inputs=[dataset_name, final_dataset, add_to_existing_dataset],
outputs=[final_dataset],
show_progress=True,
).success(
fn=hide_success_message,
outputs=[success_message],
).success(
fn=generate_dataset,
inputs=[system_prompt, num_turns, num_rows],
outputs=[final_dataset],
show_progress=True,
).success(
fn=push_to_argilla,
inputs=[final_dataset, dataset_name],
outputs=[final_dataset],
show_progress=True,
).success(
fn=show_success_message_argilla,
inputs=[],
outputs=[success_message],
)
btn_generate_and_push_to_hub.click(
fn=hide_success_message,
outputs=[success_message],
).then(
fn=generate_dataset,
inputs=[system_prompt, num_turns, num_rows],
outputs=[final_dataset],
show_progress=True,
).then(
fn=push_to_hub,
inputs=[final_dataset, private, org_name, repo_name],
outputs=[final_dataset],
show_progress=True,
).then(
fn=upload_pipeline_code,
inputs=[pipeline_code, org_name, repo_name],
outputs=[],
show_progress=True,
).success(
fn=show_success_message_hub,
inputs=[org_name, repo_name],
outputs=[success_message],
)
btn_push_to_hub.click(
fn=hide_success_message,
outputs=[success_message],
).then(
fn=push_to_hub,
inputs=[final_dataset, private, org_name, repo_name],
outputs=[final_dataset],
show_progress=True,
).then(
fn=upload_pipeline_code,
inputs=[pipeline_code, org_name, repo_name],
outputs=[],
show_progress=True,
).success(
fn=show_success_message_hub,
inputs=[org_name, repo_name],
outputs=[success_message],
)
btn_push_to_argilla.click(
fn=hide_success_message,
outputs=[success_message],
).success(
fn=validate_argilla_dataset_name,
inputs=[dataset_name, final_dataset, add_to_existing_dataset],
outputs=[final_dataset],
show_progress=True,
).success(
fn=push_to_argilla,
inputs=[final_dataset, dataset_name],
outputs=[final_dataset],
show_progress=True,
).success(
fn=show_success_message_argilla,
inputs=[],
outputs=[success_message],
)
system_prompt.change(
fn=generate_pipeline_code,
inputs=[system_prompt, num_turns, num_rows],
outputs=[pipeline_code],
)
num_turns.change(
fn=generate_pipeline_code,
inputs=[system_prompt, num_turns, num_rows],
outputs=[pipeline_code],
)
num_rows.change(
fn=generate_pipeline_code,
inputs=[system_prompt, num_turns, num_rows],
outputs=[pipeline_code],
)
app.load(get_org_dropdown, outputs=[org_name])
app.load(fn=swap_visibilty, outputs=main_ui)
|