File size: 7,153 Bytes
34371d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
from typing import List

from datasets import get_dataset_config_names, get_dataset_split_names
from distilabel.llms import InferenceEndpointsLLM
from distilabel.steps.tasks import (
    UltraFeedback,
    TextGeneration,
)

from src.distilabel_dataset_generator.pipelines.base import (
    MODEL,
    _get_next_api_key,
)
from src.distilabel_dataset_generator.utils import extract_column_names


def get_ultrafeedback_evaluator(aspect, is_sample):
    ultrafeedback_evaluator = UltraFeedback(
        llm=InferenceEndpointsLLM(
            model_id=MODEL,
            tokenizer_id=MODEL,
            api_key=_get_next_api_key(),
            generation_kwargs={
                "temperature": 0.7,
                "max_new_tokens": 256 if is_sample else 2048,
            },
        ),
        aspect=aspect,
    )
    ultrafeedback_evaluator.load()
    return ultrafeedback_evaluator


def get_custom_evaluator(prompt_template, structured_output, columns, is_sample):
    custom_evaluator = TextGeneration(
        llm=InferenceEndpointsLLM(
            model_id=MODEL,
            tokenizer_id=MODEL,
            api_key=_get_next_api_key(),
            structured_output={"format": "json", "schema": structured_output},
            generation_kwargs={
                "temperature": 0.7,
                "max_new_tokens": 256 if is_sample else 2048,
            },
        ),
        template=prompt_template,
        columns=columns
    )
    custom_evaluator.load()
    return custom_evaluator


def generate_ultrafeedback_pipeline_code(
    repo_id, subset, split, aspects, instruction_column, response_columns, num_rows
):
    if len(aspects) == 1:
        code = f"""
# Requirements: `pip install distilabel[hf-inference-endpoints]`
import os
from datasets import load_dataset
from distilabel.pipeline import Pipeline
from distilabel.steps import LoadDataFromDicts
from distilabel.steps.tasks import UltraFeedback
from distilabel.llms import InferenceEndpointsLLM

MODEL = "{MODEL}"
os.environ["HF_TOKEN"] = "hf_xxx" # https://huggingface.co/settings/tokens/new?ownUserPermissions=repo.content.read&ownUserPermissions=repo.write&globalPermissions=inference.serverless.write&canReadGatedRepos=true&tokenType=fineGrained

hf_ds = load_dataset("{repo_id}", "{subset}", split="{split}[:{num_rows}]")
data = preprocess_data(hf_ds, "{instruction_column}", "{response_columns}") # to get a list of dictionaries

with Pipeline(name="ultrafeedback") as pipeline:

    load_the_dataset = LoadDataFromDicts(
        data = data,
    )

    ultrafeedback_evaluator = UltraFeedback(
        llm=InferenceEndpointsLLM(
            model_id=MODEL,
            tokenizer_id=MODEL,
            api_key=os.environ["HF_TOKEN"],
            generation_kwargs={{
                "temperature": 0.7,
                "max_new_tokens": 2048,
            }},
        ),
        aspect=aspect,
    )
    
    load_the_dataset >> ultrafeedback_evaluator

if __name__ == "__main__":
    distiset = pipeline.run()
"""
    else:
        code = f"""
# Requirements: `pip install distilabel[hf-inference-endpoints]`
import os
from distilabel.pipeline import Pipeline
from distilabel.steps import LoadDataFromDicts, CombineOutputs
from distilabel.steps.tasks import UltraFeedback
from distilabel.llms import InferenceEndpointsLLM

MODEL = "{MODEL}"
os.environ["HF_TOKEN"] = "hf_xxx" # https://huggingface.co/settings/tokens/new?ownUserPermissions=repo.content.read&ownUserPermissions=repo.write&globalPermissions=inference.serverless.write&canReadGatedRepos=true&tokenType=fineGrained

hf_ds = load_dataset("{repo_id}", "{subset}", split="{split}")
data = preprocess_data(hf_ds, "{instruction_column}", "{response_columns}") # to get a list of dictionaries

with Pipeline(name="ultrafeedback") as pipeline:

    load_the_dataset = LoadDataFromDicts(
        data = data,
    )
    
    tasks = []
    for aspect in aspects:
        evaluate_responses = UltraFeedback(
            name=f"evaluate-responses-{{aspect}}",
            aspect=aspect,
            llm=InferenceEndpointsLLM(
                model_id=MODEL,
                tokenizer_id=MODEL,
                api_key=os.environ["HF_TOKEN"],
                generation_kwargs={{
                    "temperature": 0.7,
                    "max_new_tokens": 2048,
                }},
            output_mappings={{
                "ratings": f"ratings_{{aspect}}",
                "types": f"type_{{aspect}}",
                "rationales": f"rationales_for_types_{{aspect}}",
                "rationales-for-ratings": f"rationales_for_ratings_{{aspect}}",
            }} if aspect in ["truthfulness", "helpfulness"] else {{"rationales": f"rationales_{{aspect}}", "ratings": f"ratings_{{aspect}}"}},
        )
        tasks.append(evaluate_responses)
    
    combine_outputs = CombineOutputs()
    
    load_the_dataset >> tasks >> combine_outputs

if __name__ == "__main__":
    distiset = pipeline.run()
"""
    return code


def generate_custom_pipeline_code(
    repo_id, subset, split, prompt_template, structured_output, num_rows
):
    columns = extract_column_names(structured_output)
    code = f"""
# Requirements: `pip install distilabel[hf-inference-endpoints, instructor]`
import os
from distilabel.pipeline import Pipeline
from distilabel.steps import LoadDataFromHub
from distilabel.steps.tasks import TextGeneration
from distilabel.llms import InferenceEndpointsLLM

MODEL = "{MODEL}"
CUSTOM_TEMPLATE = "{prompt_template}"
os.environ["HF_TOKEN"] = "hf_xxx" # https://huggingface.co/settings/tokens/new?ownUserPermissions=repo.content.read&ownUserPermissions=repo.write&globalPermissions=inference.serverless.write&canReadGatedRepos=true&tokenType=fineGrained

with Pipeline(name="custom-evaluation") as pipeline:
    load_the_dataset = LoadDataFromHub(
        repo_id="{repo_id}",
        config="{subset}",
        split="{split}",
        num_examples={num_rows},
        batch_size=2
    )
    custom_evaluator = TextGeneration(
        llm=InferenceEndpointsLLM(
            model_id=MODEL,
            tokenizer_id=MODEL,
            api_key=os.environ["HF_TOKEN"],
            structured_output={{"format": "json", "schema": {structured_output}}},
            generation_kwargs={{
                "temperature": 0.7,
                "max_new_tokens": 2048,
            }},
        ),
        template=CUSTOM_TEMPLATE,
        columns={columns}
    )
    
    load_the_dataset >> custom_evaluator

if __name__ == "__main__":
    distiset = pipeline.run()
"""
    return code


def generate_pipeline_code(repo_id, aspects, instruction_column, response_columns, prompt_template, structured_output, num_rows, eval_type):
    if repo_id is None:
        subset = "default"
        split = "train"
    else:
        subset = get_dataset_config_names(repo_id)[0]
        split = get_dataset_split_names(repo_id, subset)[0]
    if eval_type == "ultrafeedback":
        return generate_ultrafeedback_pipeline_code(repo_id, subset, split, aspects, instruction_column, response_columns, num_rows)
    return generate_custom_pipeline_code(repo_id, subset, split, prompt_template, structured_output, num_rows)