Spaces:
Running
Running
array input audio
Browse files- app.py +12 -7
- packages.txt +1 -0
app.py
CHANGED
|
@@ -6,6 +6,7 @@ import google.generativeai as genai
|
|
| 6 |
import re
|
| 7 |
import torch
|
| 8 |
from transformers import pipeline
|
|
|
|
| 9 |
import time
|
| 10 |
import spaces
|
| 11 |
|
|
@@ -54,14 +55,14 @@ def summarize_transcription(transcription, model, gemini_prompt):
|
|
| 54 |
return f"Error summarizing transcription: {str(e)}"
|
| 55 |
|
| 56 |
@spaces.GPU(duration=120)
|
| 57 |
-
def process_audio(
|
| 58 |
print("Starting transcription...")
|
| 59 |
if language:
|
| 60 |
print(f"Using language: {language}")
|
| 61 |
-
transcription = pipe(
|
| 62 |
else:
|
| 63 |
print("No language defined, using default language")
|
| 64 |
-
transcription = pipe(
|
| 65 |
return transcription
|
| 66 |
|
| 67 |
def transcribe(youtube_url, audio_file, whisper_model, gemini_api_key, gemini_prompt, gemini_model_variant, language, progress=gr.Progress()):
|
|
@@ -72,15 +73,13 @@ def transcribe(youtube_url, audio_file, whisper_model, gemini_api_key, gemini_pr
|
|
| 72 |
gemini_api_key = default_gemini_api_key
|
| 73 |
model = configure_genai(gemini_api_key, gemini_model_variant)
|
| 74 |
|
| 75 |
-
|
| 76 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 77 |
pipe = pipeline(
|
| 78 |
task="automatic-speech-recognition",
|
| 79 |
model=whisper_model,
|
| 80 |
chunk_length_s=30,
|
| 81 |
device=device,
|
| 82 |
)
|
| 83 |
-
pipe.model = pipe.model.to(device)
|
| 84 |
|
| 85 |
if youtube_url:
|
| 86 |
progress(0.1, desc="Extracting YouTube ID")
|
|
@@ -97,9 +96,15 @@ def transcribe(youtube_url, audio_file, whisper_model, gemini_api_key, gemini_pr
|
|
| 97 |
progress(0.2, desc="Reading audio file")
|
| 98 |
audio_file = f"{audio_file.name}"
|
| 99 |
print(f"Audio file read: {audio_file}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
progress(0.4, desc="Starting transcription")
|
| 102 |
-
transcription = process_audio(
|
| 103 |
|
| 104 |
progress(0.6, desc="Cleaning up")
|
| 105 |
# Delete the audio file after transcription
|
|
|
|
| 6 |
import re
|
| 7 |
import torch
|
| 8 |
from transformers import pipeline
|
| 9 |
+
from transformers.pipelines.audio_utils import ffmpeg_read
|
| 10 |
import time
|
| 11 |
import spaces
|
| 12 |
|
|
|
|
| 55 |
return f"Error summarizing transcription: {str(e)}"
|
| 56 |
|
| 57 |
@spaces.GPU(duration=120)
|
| 58 |
+
def process_audio(inputs, pipe, language):
|
| 59 |
print("Starting transcription...")
|
| 60 |
if language:
|
| 61 |
print(f"Using language: {language}")
|
| 62 |
+
transcription = pipe(inputs, batch_size=8, generate_kwargs={"task": "transcribe", "language": language}, return_timestamps=True)["text"]
|
| 63 |
else:
|
| 64 |
print("No language defined, using default language")
|
| 65 |
+
transcription = pipe(inputs, batch_size=8, generate_kwargs={"task": "transcribe"}, return_timestamps=True)["text"]
|
| 66 |
return transcription
|
| 67 |
|
| 68 |
def transcribe(youtube_url, audio_file, whisper_model, gemini_api_key, gemini_prompt, gemini_model_variant, language, progress=gr.Progress()):
|
|
|
|
| 73 |
gemini_api_key = default_gemini_api_key
|
| 74 |
model = configure_genai(gemini_api_key, gemini_model_variant)
|
| 75 |
|
| 76 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
|
|
|
| 77 |
pipe = pipeline(
|
| 78 |
task="automatic-speech-recognition",
|
| 79 |
model=whisper_model,
|
| 80 |
chunk_length_s=30,
|
| 81 |
device=device,
|
| 82 |
)
|
|
|
|
| 83 |
|
| 84 |
if youtube_url:
|
| 85 |
progress(0.1, desc="Extracting YouTube ID")
|
|
|
|
| 96 |
progress(0.2, desc="Reading audio file")
|
| 97 |
audio_file = f"{audio_file.name}"
|
| 98 |
print(f"Audio file read: {audio_file}")
|
| 99 |
+
|
| 100 |
+
with open(audio_file, "rb") as f:
|
| 101 |
+
inputs = f.read()
|
| 102 |
+
|
| 103 |
+
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
| 104 |
+
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
| 105 |
|
| 106 |
progress(0.4, desc="Starting transcription")
|
| 107 |
+
transcription = process_audio(inputs, pipe, language)
|
| 108 |
|
| 109 |
progress(0.6, desc="Cleaning up")
|
| 110 |
# Delete the audio file after transcription
|
packages.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
ffmpeg
|