Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import cv2 | |
| import numpy as np | |
| from PIL import Image | |
| def warp_perspective(image, points): | |
| # Input and output dimensions | |
| w, h = 300, 400 # You can adjust this based on the desired output size | |
| input_pts = np.array(points, dtype=np.float32) | |
| output_pts = np.array([[0, 0], [w, 0], [w, h], [0, h]], dtype=np.float32) | |
| # Compute perspective matrix and warp the image | |
| matrix = cv2.getPerspectiveTransform(input_pts, output_pts) | |
| warped_img = cv2.warpPerspective(image, matrix, (w, h)) | |
| return warped_img | |
| st.title("Custom Shape Cropping & Perspective Correction") | |
| uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) | |
| # Provide a placeholder for the user to input 4 vertices | |
| points = [] | |
| for i in range(4): | |
| coords = st.text_input(f"Enter point {i+1} (format: x,y)", "") | |
| x, y = map(int, coords.split(',')) if ',' in coords else (0, 0) | |
| points.append([x, y]) | |
| if uploaded_file and len(points) == 4: | |
| image = Image.open(uploaded_file).convert('RGB') | |
| image_np = np.array(image) | |
| corrected_image = warp_perspective(image_np, points) | |
| st.image(corrected_image, caption='Corrected Image.', channels="BGR", use_column_width=True) | |