import gradio as gr import pandas as pd from rdkit import Chem from rdkit.Chem import AllChem import joblib model = joblib.load('CHO.pkl') def predict(smiles): if smiles.strip() == "": raise gr.Error("SMILES input error") mol = Chem.MolFromSmiles(smiles) if mol == None: raise gr.Error("SMILES input error") mol_ECFP4 = list(AllChem.GetMorganFingerprintAsBitVect(mol, 2, nBits=1024).ToBitString()) preprocess_data = pd.DataFrame([mol_ECFP4]) result = model.predict(preprocess_data) postprocess_data = '{:.2e}'.format(pow(10, result[0])) return postprocess_data iface = gr.Interface(fn=predict, inputs=gr.Textbox(lines=2, label="Chemical substance SMILES"), outputs=gr.Textbox(lines=1, label="Cytotoxicity of disinfection byproducts in CHO cells",info="Unit of measurement: molar concentration"), examples=[["O=C(O)CBr"],["O=CC(Br)(Br)Br"],["IC(Br)Br"]],allow_flagging="never") iface.launch()