Upload 2 files
Browse files- app.py +153 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import io
|
3 |
+
import pandas as pd
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from contextlib import redirect_stdout
|
6 |
+
from pejmanai_data_analysis.app import (
|
7 |
+
read_csv, data_description, data_preprocessing,
|
8 |
+
data_visualization, data_prediction, data_classification
|
9 |
+
)
|
10 |
+
|
11 |
+
# Function to capture printed output with error handling
|
12 |
+
def capture_output(func, *args, **kwargs):
|
13 |
+
f = io.StringIO()
|
14 |
+
try:
|
15 |
+
with redirect_stdout(f):
|
16 |
+
func(*args, **kwargs)
|
17 |
+
return f.getvalue()
|
18 |
+
except Exception as e:
|
19 |
+
return f"Error occurred: {str(e)}"
|
20 |
+
|
21 |
+
# Function to handle regression workflow with error handling
|
22 |
+
def regression_workflow(csv_file, x_column, y_column, target_column):
|
23 |
+
try:
|
24 |
+
# Capture data description output
|
25 |
+
data_desc = capture_output(data_description, csv_file.name)
|
26 |
+
|
27 |
+
# Step b) Data Preprocessing
|
28 |
+
df_preprocessed = data_preprocessing(csv_file.name)
|
29 |
+
|
30 |
+
# Step c) Data Visualization
|
31 |
+
if pd.api.types.is_numeric_dtype(df_preprocessed[x_column]) and pd.api.types.is_numeric_dtype(df_preprocessed[y_column]):
|
32 |
+
plt.figure(figsize=(16, 12))
|
33 |
+
data_visualization(csv_file.name, x_column, y_column)
|
34 |
+
visualization_output = plt.gcf()
|
35 |
+
else:
|
36 |
+
plt.figure()
|
37 |
+
plt.text(0.5, 0.5, 'Selected columns are not numeric.', fontsize=12, ha='center')
|
38 |
+
visualization_output = plt.gcf()
|
39 |
+
|
40 |
+
# Capture regression output
|
41 |
+
regression_output = capture_output(data_prediction, csv_file.name, target_column)
|
42 |
+
|
43 |
+
return data_desc, df_preprocessed, visualization_output, regression_output
|
44 |
+
except Exception as e:
|
45 |
+
return f"Error occurred during regression workflow: {str(e)}", None, None, None
|
46 |
+
|
47 |
+
# Function to handle classification workflow with error handling
|
48 |
+
def classification_workflow(csv_file, x_column, y_column, target_column):
|
49 |
+
try:
|
50 |
+
# Capture data description output
|
51 |
+
data_desc = capture_output(data_description, csv_file.name)
|
52 |
+
|
53 |
+
# Step b) Data Preprocessing
|
54 |
+
df_preprocessed = data_preprocessing(csv_file.name)
|
55 |
+
|
56 |
+
# Step c) Data Visualization
|
57 |
+
if pd.api.types.is_numeric_dtype(df_preprocessed[x_column]) and pd.api.types.is_numeric_dtype(df_preprocessed[y_column]):
|
58 |
+
plt.figure(figsize=(16, 12))
|
59 |
+
data_visualization(csv_file.name, x_column, y_column)
|
60 |
+
visualization_output = plt.gcf()
|
61 |
+
else:
|
62 |
+
plt.figure()
|
63 |
+
plt.text(0.5, 0.5, 'Selected columns are not numeric.', fontsize=12, ha='center')
|
64 |
+
visualization_output = plt.gcf()
|
65 |
+
|
66 |
+
# Capture classification output
|
67 |
+
classification_output = capture_output(data_classification, csv_file.name, target_column)
|
68 |
+
|
69 |
+
return data_desc, df_preprocessed, visualization_output, classification_output
|
70 |
+
except Exception as e:
|
71 |
+
return f"Error occurred during classification workflow: {str(e)}", None, None, None
|
72 |
+
|
73 |
+
# Main Gradio interface function with error handling
|
74 |
+
def gradio_interface(option, csv_file, x_column, y_column, target_column):
|
75 |
+
if option == "Regression Problem":
|
76 |
+
return regression_workflow(csv_file, x_column, y_column, target_column)
|
77 |
+
elif option == "Classification Problem":
|
78 |
+
return classification_workflow(csv_file, x_column, y_column, target_column)
|
79 |
+
|
80 |
+
# Reset function to clear outputs
|
81 |
+
def reset_all():
|
82 |
+
return "", None, None, ""
|
83 |
+
|
84 |
+
# Explanation text
|
85 |
+
explanation = """
|
86 |
+
### PejmanAI Data Analysis Tool
|
87 |
+
|
88 |
+
This app uses the `pejmanai_data_analysis` package, available on [PyPI](https://pypi.org/project/pejmanai-data-analysis/).
|
89 |
+
The GitHub repository for the project is available [here](https://github.com/arad1367/pejmanai_data_analysis_pypi_package).
|
90 |
+
|
91 |
+
**About the app:**
|
92 |
+
- In the visualization part, you must use two numerical columns. If you select string columns, you will not see any output.
|
93 |
+
- The target column is the dependent variable on which you want to make predictions.
|
94 |
+
- Due to the nature of the `pejmanai_data_analysis` package, the data description and model output are shown in a captured format (this will be addressed in the next version).
|
95 |
+
"""
|
96 |
+
|
97 |
+
# Footer HTML
|
98 |
+
footer = """
|
99 |
+
<div style="text-align: center; margin-top: 20px;">
|
100 |
+
<a href="https://www.linkedin.com/in/pejman-ebrahimi-4a60151a7/" target="_blank">LinkedIn</a> |
|
101 |
+
<a href="https://github.com/arad1367" target="_blank">GitHub</a> |
|
102 |
+
<a href="https://arad1367.pythonanywhere.com/" target="_blank">Live demo of my PhD defense</a>
|
103 |
+
<br>
|
104 |
+
Made with 💖 by Pejman Ebrahimi
|
105 |
+
</div>
|
106 |
+
"""
|
107 |
+
|
108 |
+
# Set up the Gradio interface with UI adjustments
|
109 |
+
with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as interface:
|
110 |
+
gr.Markdown(explanation)
|
111 |
+
|
112 |
+
with gr.Row():
|
113 |
+
problem_type = gr.Radio(["Regression Problem", "Classification Problem"], label="Select Problem Type")
|
114 |
+
with gr.Row():
|
115 |
+
csv_file = gr.File(label="Upload CSV File")
|
116 |
+
with gr.Row():
|
117 |
+
x_column = gr.Textbox(label="Enter X Column for Visualization")
|
118 |
+
with gr.Row():
|
119 |
+
y_column = gr.Textbox(label="Enter Y Column for Visualization")
|
120 |
+
with gr.Row():
|
121 |
+
target_column = gr.Textbox(label="Enter Target Column for Model Training")
|
122 |
+
|
123 |
+
with gr.Row():
|
124 |
+
submit_button = gr.Button("Run Analysis")
|
125 |
+
|
126 |
+
with gr.Row():
|
127 |
+
data_desc_output = gr.Textbox(label="Data Description", lines=20, placeholder="Data Description Output")
|
128 |
+
with gr.Row():
|
129 |
+
df_preprocessed_output = gr.Dataframe(label="Data Preprocessing Output")
|
130 |
+
with gr.Row():
|
131 |
+
visualization_output = gr.Plot(label="Data Visualization Output")
|
132 |
+
with gr.Row():
|
133 |
+
model_output = gr.Textbox(label="Model Output", lines=20, placeholder="Model Output")
|
134 |
+
|
135 |
+
with gr.Row():
|
136 |
+
reset_button = gr.Button("Reset Outputs")
|
137 |
+
|
138 |
+
reset_button.click(
|
139 |
+
fn=reset_all,
|
140 |
+
inputs=[],
|
141 |
+
outputs=[data_desc_output, df_preprocessed_output, visualization_output, model_output]
|
142 |
+
)
|
143 |
+
|
144 |
+
submit_button.click(
|
145 |
+
fn=gradio_interface,
|
146 |
+
inputs=[problem_type, csv_file, x_column, y_column, target_column],
|
147 |
+
outputs=[data_desc_output, df_preprocessed_output, visualization_output, model_output]
|
148 |
+
)
|
149 |
+
|
150 |
+
gr.HTML(footer)
|
151 |
+
|
152 |
+
# Launch the Gradio interface
|
153 |
+
interface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
contextlib
|
3 |
+
pejmanai_data_analysis
|