File size: 44,047 Bytes
9227b81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca323d4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
<!-- PPO Simulation By Pejman Ebrahimi -->
<!DOCTYPE html>
<html lang="en">
  <head>
    <meta charset="UTF-8" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0" />
    <title>PPO Reinforcement Learning Simulation</title>
    <style>
      body {
        font-family: Arial, sans-serif;
        margin: 0;
        padding: 20px;
        line-height: 1.6;
        color: #333;
        background-color: #f8f9fa;
      }
      .container {
        max-width: 1000px;
        margin: 0 auto;
        background-color: white;
        padding: 20px;
        border-radius: 8px;
        box-shadow: 0 2px 10px rgba(0, 0, 0, 0.1);
      }
      h1,
      h2,
      h3 {
        color: #2c3e50;
      }
      h1 {
        text-align: center;
        margin-bottom: 30px;
        border-bottom: 2px solid #3498db;
        padding-bottom: 10px;
      }
      .grid-container {
        display: grid;
        grid-template-columns: repeat(10, 1fr);
        gap: 2px;
        margin: 20px 0;
      }
      .cell {
        width: 100%;
        aspect-ratio: 1;
        background-color: #ecf0f1;
        display: flex;
        align-items: center;
        justify-content: center;
        cursor: pointer;
        position: relative;
        transition: all 0.3s;
      }
      .agent {
        background-color: #3498db;
        border-radius: 50%;
        width: 80%;
        height: 80%;
        position: absolute;
      }
      .goal {
        background-color: #2ecc71;
        width: 80%;
        height: 80%;
        position: absolute;
      }
      .obstacle {
        background-color: #e74c3c;
        width: 80%;
        height: 80%;
        position: absolute;
      }
      .panel {
        background-color: #f5f7f9;
        padding: 15px;
        border-radius: 5px;
        margin-bottom: 20px;
        border: 1px solid #ddd;
      }
      .controls {
        display: flex;
        gap: 10px;
        flex-wrap: wrap;
        margin: 20px 0;
      }
      button {
        padding: 8px 15px;
        background-color: #3498db;
        color: white;
        border: none;
        border-radius: 4px;
        cursor: pointer;
        transition: background-color 0.3s;
      }
      button:hover {
        background-color: #2980b9;
      }
      button:disabled {
        background-color: #95a5a6;
        cursor: not-allowed;
      }
      .sliders {
        display: flex;
        flex-direction: column;
        gap: 10px;
        margin: 15px 0;
      }
      .slider-container {
        display: flex;
        align-items: center;
      }
      .slider-container label {
        flex: 1;
        min-width: 180px;
      }
      .slider-container input {
        flex: 2;
      }
      .slider-value {
        flex: 0 0 50px;
        text-align: right;
      }
      #log-container {
        max-height: 200px;
        overflow-y: auto;
        background-color: #2c3e50;
        color: #ecf0f1;
        padding: 10px;
        border-radius: 4px;
        margin-top: 20px;
        font-family: monospace;
      }
      .log-entry {
        margin: 5px 0;
      }
      .tab-container {
        margin-top: 20px;
      }
      .tab-buttons {
        display: flex;
        border-bottom: 1px solid #ddd;
      }
      .tab-button {
        padding: 10px 20px;
        background-color: #f1f1f1;
        border: none;
        cursor: pointer;
        transition: background-color 0.3s;
      }
      .tab-button.active {
        background-color: #3498db;
        color: white;
      }
      .tab-content {
        display: none;
        padding: 15px;
        border: 1px solid #ddd;
        border-top: none;
        animation: fadeIn 0.5s;
      }
      .tab-content.active {
        display: block;
      }
      #policy-display {
        width: 100%;
        height: 300px;
        overflow: auto;
        margin-top: 10px;
      }
      .policy-grid {
        display: grid;
        grid-template-columns: repeat(10, 1fr);
        gap: 2px;
      }
      .policy-cell {
        aspect-ratio: 1;
        border: 1px solid #ddd;
        padding: 2px;
        font-size: 10px;
        display: flex;
        flex-direction: column;
        align-items: center;
        justify-content: center;
      }
      .arrow {
        width: 0;
        height: 0;
        border-style: solid;
        margin: 2px;
      }
      .arrow-up {
        border-width: 0 4px 8px 4px;
        border-color: transparent transparent #3498db transparent;
      }
      .arrow-right {
        border-width: 4px 0 4px 8px;
        border-color: transparent transparent transparent #3498db;
      }
      .arrow-down {
        border-width: 8px 4px 0 4px;
        border-color: #3498db transparent transparent transparent;
      }
      .arrow-left {
        border-width: 4px 8px 4px 0;
        border-color: transparent #3498db transparent transparent;
      }
      .progress-container {
        margin-top: 10px;
        background-color: #f1f1f1;
        border-radius: 5px;
        height: 20px;
        position: relative;
      }
      .progress-bar {
        height: 100%;
        background-color: #3498db;
        border-radius: 5px;
        width: 0%;
        transition: width 0.3s;
      }
      .chart-container {
        height: 300px;
        margin: 15px 0;
      }
      @keyframes fadeIn {
        from {
          opacity: 0;
        }
        to {
          opacity: 1;
        }
      }
      .popup {
        display: none;
        position: fixed;
        top: 50%;
        left: 50%;
        transform: translate(-50%, -50%);
        background-color: white;
        padding: 20px;
        border-radius: 8px;
        box-shadow: 0 4px 20px rgba(0, 0, 0, 0.2);
        z-index: 1000;
        max-width: 80%;
        max-height: 80%;
        overflow-y: auto;
      }
      .popup-overlay {
        display: none;
        position: fixed;
        top: 0;
        left: 0;
        width: 100%;
        height: 100%;
        background-color: rgba(0, 0, 0, 0.5);
        z-index: 999;
      }
      .reward-display {
        font-weight: bold;
        font-size: 1.2em;
        text-align: center;
        margin: 10px 0;
      }
      .explanation {
        background-color: #e8f4fc;
        padding: 15px;
        border-radius: 5px;
        margin: 10px 0;
        border-left: 4px solid #3498db;
      }
      .highlight {
        background-color: #fffacd;
        padding: 2px 4px;
        border-radius: 3px;
      }
      .concept-box {
        border: 1px solid #ddd;
        margin: 15px 0;
        border-radius: 5px;
        overflow: hidden;
      }
      .concept-title {
        background-color: #3498db;
        color: white;
        padding: 10px;
        margin: 0;
      }
      .concept-content {
        padding: 15px;
      }
    </style>
  </head>
  <body>
    <div class="container">
      <h1>Proximal Policy Optimization (PPO) Simulation</h1>

      <div class="explanation">
        <p>
          This simulation demonstrates how an agent learns to navigate to a goal
          using <strong>Proximal Policy Optimization (PPO)</strong>. PPO is an
          on-policy reinforcement learning algorithm that uses a "clipping"
          mechanism to prevent large policy updates, making training more stable
          and efficient.
        </p>
      </div>

      <div class="tab-container">
        <div class="tab-buttons">
          <button class="tab-button active" onclick="openTab('simulation-tab')">
            Simulation
          </button>
          <button class="tab-button" onclick="openTab('concepts-tab')">
            PPO Concepts
          </button>
          <button class="tab-button" onclick="openTab('metrics-tab')">
            Training Metrics
          </button>
        </div>

        <div id="simulation-tab" class="tab-content active">
          <div class="panel">
            <h3>Environment</h3>
            <p>
              The agent (blue) must navigate to the goal (green) while avoiding
              obstacles (red).
            </p>
            <div class="grid-container" id="grid"></div>
            <div class="reward-display">
              Total Reward: <span id="reward-value">0</span>
            </div>
          </div>

          <div class="controls">
            <button id="start-btn" onclick="startTraining()">
              Start Training
            </button>
            <button id="reset-btn" onclick="resetEnvironment()">
              Reset Environment
            </button>
            <button id="step-btn" onclick="stepTraining()" disabled>
              Step Forward
            </button>
            <button id="place-obstacle-btn" onclick="toggleObstaclePlacement()">
              Place Obstacles
            </button>
            <button id="animation-speed-btn" onclick="toggleAnimationSpeed()">
              Animation Speed: Normal
            </button>
          </div>

          <div class="panel">
            <h3>PPO Parameters</h3>
            <div class="sliders">
              <div class="slider-container">
                <label for="clip-ratio">Clip Ratio (ε):</label>
                <input
                  type="range"
                  id="clip-ratio"
                  min="0.05"
                  max="0.5"
                  step="0.05"
                  value="0.2"
                  oninput="updateSliderValue('clip-ratio')"
                />
                <span class="slider-value" id="clip-ratio-value">0.2</span>
              </div>
              <div class="slider-container">
                <label for="learning-rate">Learning Rate:</label>
                <input
                  type="range"
                  id="learning-rate"
                  min="0.01"
                  max="1"
                  step="0.01"
                  value="0.1"
                  oninput="updateSliderValue('learning-rate')"
                />
                <span class="slider-value" id="learning-rate-value">0.1</span>
              </div>
              <div class="slider-container">
                <label for="epochs">PPO Epochs per Update:</label>
                <input
                  type="range"
                  id="epochs"
                  min="1"
                  max="10"
                  step="1"
                  value="4"
                  oninput="updateSliderValue('epochs')"
                />
                <span class="slider-value" id="epochs-value">4</span>
              </div>
            </div>
          </div>

          <div class="panel">
            <h3>Policy Visualization</h3>
            <p>
              This shows the current policy of the agent (arrows indicate
              preferred actions in each state).
            </p>
            <div id="policy-display">
              <div class="policy-grid" id="policy-grid"></div>
            </div>
          </div>

          <div id="log-container"></div>
        </div>

        <div id="concepts-tab" class="tab-content">
          <div class="concept-box">
            <h3 class="concept-title">What is PPO?</h3>
            <div class="concept-content">
              <p>
                Proximal Policy Optimization (PPO) is a policy gradient method
                for reinforcement learning developed by OpenAI in 2017. It has
                become one of the most popular RL algorithms due to its
                simplicity and effectiveness.
              </p>
              <p>PPO aims to balance two objectives:</p>
              <ul>
                <li>Improving the agent's policy to maximize rewards</li>
                <li>
                  Preventing large policy updates that could destabilize
                  training
                </li>
              </ul>
            </div>
          </div>

          <div class="concept-box">
            <h3 class="concept-title">Key Innovations in PPO</h3>
            <div class="concept-content">
              <p>
                The central innovation in PPO is the
                <strong>clipped surrogate objective function</strong>:
              </p>
              <p style="text-align: center">
                L<sup>CLIP</sup>(θ) = E[min(r<sub>t</sub>(θ)A<sub>t</sub>,
                clip(r<sub>t</sub>(θ), 1-ε, 1+ε)A<sub>t</sub>)]
              </p>
              <p>where:</p>
              <ul>
                <li>
                  <strong>r<sub>t</sub>(θ)</strong> is the ratio of
                  probabilities under new and old policies
                </li>
                <li>
                  <strong>A<sub>t</sub></strong> is the advantage estimate
                </li>
                <li>
                  <strong>ε</strong> is the clipping parameter (usually 0.1 or
                  0.2)
                </li>
              </ul>
              <p>
                The clipping mechanism ensures that the policy update stays
                within a "trust region" by limiting how much the new policy can
                deviate from the old one.
              </p>
            </div>
          </div>

          <div class="concept-box">
            <h3 class="concept-title">How PPO Works in This Simulation</h3>
            <div class="concept-content">
              <ol>
                <li>
                  The agent collects experience by interacting with the
                  environment using its current policy
                </li>
                <li>Advantages are computed for each state-action pair</li>
                <li>
                  The policy is updated using the clipped surrogate objective
                </li>
                <li>
                  Multiple optimization epochs are performed on the same batch
                  of data
                </li>
                <li>The process repeats with the new policy</li>
              </ol>
              <p>
                You can observe these steps in action in the simulation tab by
                watching the policy visualization and training metrics.
              </p>
            </div>
          </div>

          <div class="concept-box">
            <h3 class="concept-title">PPO vs. Other RL Algorithms</h3>
            <div class="concept-content">
              <p>PPO improves upon earlier algorithms in several ways:</p>
              <ul>
                <li>
                  <strong>vs. REINFORCE:</strong> More stable training due to
                  advantage estimation and clipping
                </li>
                <li>
                  <strong>vs. TRPO:</strong> Simpler implementation while
                  maintaining similar performance
                </li>
                <li>
                  <strong>vs. A2C/A3C:</strong> Better sample efficiency and
                  more stable policy updates
                </li>
                <li>
                  <strong>vs. Off-policy algorithms (DQN, DDPG):</strong> Less
                  sensitive to hyperparameters and often more stable
                </li>
              </ul>
            </div>
          </div>
        </div>

        <div id="metrics-tab" class="tab-content">
          <div class="panel">
            <h3>Training Progress</h3>
            <div class="progress-container">
              <div class="progress-bar" id="training-progress"></div>
            </div>
            <p id="episode-counter">Episodes: 0 / 100</p>
          </div>

          <div class="panel">
            <h3>Reward Over Time</h3>
            <div class="chart-container" id="reward-chart"></div>
          </div>

          <div class="panel">
            <h3>Policy Loss</h3>
            <div class="chart-container" id="policy-loss-chart"></div>
          </div>

          <div class="panel">
            <h3>Value Loss</h3>
            <div class="chart-container" id="value-loss-chart"></div>
          </div>
        </div>
      </div>
    </div>

    <div class="popup-overlay" id="popup-overlay"></div>
    <div class="popup" id="popup">
      <h2 id="popup-title">Title</h2>
      <div id="popup-content">Content</div>
      <button onclick="closePopup()">Close</button>
    </div>

    <script>
      // Environment configuration
      const GRID_SIZE = 10;
      let grid = [];
      let agentPos = { x: 0, y: 0 };
      let goalPos = { x: 9, y: 9 };
      let obstacles = [];
      let placingObstacles = false;

      // Agent and PPO parameters
      let policyNetwork = {};
      let valueNetwork = {};
      let clipRatio = 0.2;
      let learningRate = 0.1; // Default learning rate (0-1 range)
      let ppoEpochs = 4;
      let gamma = 0.99; // Discount factor
      let lambda = 0.95; // GAE parameter

      // Training state
      let isTraining = false;
      let episode = 0;
      let maxEpisodes = 100;
      let episodeSteps = 0;
      let maxStepsPerEpisode = 100; // Increased max steps to allow more exploration
      let totalReward = 0;
      let episodeRewards = [];
      let policyLosses = [];
      let valueLosses = [];

      // Tracking for visualization
      let trajectories = [];
      let oldPolicy = {};

      // Exploration parameters
      let explorationRate = 0.2; // Probability of taking a random action (exploration)

      // Initialize the environment
      function initializeEnvironment() {
        grid = [];
        obstacles = [];

        // Create the grid UI
        const gridContainer = document.getElementById("grid");
        gridContainer.innerHTML = "";

        for (let y = 0; y < GRID_SIZE; y++) {
          for (let x = 0; x < GRID_SIZE; x++) {
            const cell = document.createElement("div");
            cell.classList.add("cell");
            cell.dataset.x = x;
            cell.dataset.y = y;
            cell.addEventListener("click", handleCellClick);
            gridContainer.appendChild(cell);
          }
        }

        // Place agent and goal
        agentPos = { x: 0, y: 0 };
        goalPos = { x: 9, y: 9 };
        renderGrid();

        // Initialize policy and value networks
        initializeNetworks();
        renderPolicy();
        updateReward(0);
      }

      // Initialize policy and value networks
      function initializeNetworks() {
        policyNetwork = {};
        valueNetwork = {};

        // Initialize learning rate
        learningRate = parseFloat(
          document.getElementById("learning-rate").value
        );

        // Initialize policy and value for each state (cell)
        for (let y = 0; y < GRID_SIZE; y++) {
          for (let x = 0; x < GRID_SIZE; x++) {
            const stateKey = `${x},${y}`;

            // Initialize policy with random probabilities
            policyNetwork[stateKey] = {
              up: 0.25,
              right: 0.25,
              down: 0.25,
              left: 0.25,
            };

            // Initialize value to zero
            valueNetwork[stateKey] = 0;
          }
        }
      }

      function renderGrid() {
        // Clear all cells
        const cells = document.querySelectorAll(".cell");
        cells.forEach((cell) => {
          cell.innerHTML = "";
        });

        // Place agent
        const agentCell = document.querySelector(
          `.cell[data-x="${agentPos.x}"][data-y="${agentPos.y}"]`
        );
        const agentElement = document.createElement("div");
        agentElement.classList.add("agent");
        agentCell.appendChild(agentElement);

        // Place goal
        const goalCell = document.querySelector(
          `.cell[data-x="${goalPos.x}"][data-y="${goalPos.y}"]`
        );
        const goalElement = document.createElement("div");
        goalElement.classList.add("goal");
        goalCell.appendChild(goalElement);

        // Place obstacles
        obstacles.forEach((obstacle) => {
          const obstacleCell = document.querySelector(
            `.cell[data-x="${obstacle.x}"][data-y="${obstacle.y}"]`
          );
          const obstacleElement = document.createElement("div");
          obstacleElement.classList.add("obstacle");
          obstacleCell.appendChild(obstacleElement);
        });
      }

      function renderPolicy() {
        const policyGrid = document.getElementById("policy-grid");
        policyGrid.innerHTML = "";

        for (let y = 0; y < GRID_SIZE; y++) {
          for (let x = 0; x < GRID_SIZE; x++) {
            const cell = document.createElement("div");
            cell.classList.add("policy-cell");

            const stateKey = `${x},${y}`;
            const policy = policyNetwork[stateKey];

            // Skip rendering policy for obstacles
            if (isObstacle(x, y)) {
              cell.style.backgroundColor = "#e74c3c";
              policyGrid.appendChild(cell);
              continue;
            }

            // If it's the goal, mark it green
            if (x === goalPos.x && y === goalPos.y) {
              cell.style.backgroundColor = "#2ecc71";
              policyGrid.appendChild(cell);
              continue;
            }

            // Create arrows for each action probability
            for (const [action, prob] of Object.entries(policy)) {
              if (prob > 0.2) {
                // Only show significant probabilities
                const arrow = document.createElement("div");
                arrow.classList.add("arrow", `arrow-${action}`);
                arrow.style.opacity = Math.min(1, prob * 2); // Scale opacity with probability
                cell.appendChild(arrow);
              }
            }

            // Add state value indication using background color intensity
            const value = valueNetwork[stateKey];
            const normalizedValue = (value + 10) / 20; // Normalize to [0,1] range assuming values between -10 and 10
            const intensity = Math.max(
              0,
              Math.min(255, Math.floor(normalizedValue * 255))
            );
            cell.style.backgroundColor = `rgba(236, 240, 241, ${normalizedValue})`;

            policyGrid.appendChild(cell);
          }
        }
      }

      function handleCellClick(event) {
        const x = parseInt(event.currentTarget.dataset.x);
        const y = parseInt(event.currentTarget.dataset.y);

        if (placingObstacles) {
          // Don't allow obstacles on agent or goal
          if (
            (x === agentPos.x && y === agentPos.y) ||
            (x === goalPos.x && y === goalPos.y)
          ) {
            return;
          }

          const obstacleIndex = obstacles.findIndex(
            (o) => o.x === x && o.y === y
          );
          if (obstacleIndex === -1) {
            obstacles.push({ x, y });
          } else {
            obstacles.splice(obstacleIndex, 1);
          }
          renderGrid();
          renderPolicy();
        }
      }

      function toggleObstaclePlacement() {
        placingObstacles = !placingObstacles;
        const btn = document.getElementById("place-obstacle-btn");
        btn.textContent = placingObstacles ? "Done Placing" : "Place Obstacles";
        btn.style.backgroundColor = placingObstacles ? "#e74c3c" : "#3498db";
      }

      function isObstacle(x, y) {
        return obstacles.some((o) => o.x === x && o.y === y);
      }

      function resetEnvironment() {
        initializeEnvironment();
        episodeRewards = [];
        policyLosses = [];
        valueLosses = [];
        episode = 0;
        updateEpisodeCounter();
        updateReward(0);

        // Reset training state
        isTraining = false;
        document.getElementById("start-btn").textContent = "Start Training";
        document.getElementById("step-btn").disabled = true;

        // Clear charts
        // In a real implementation, you would update the charts here

        logMessage("Environment reset. Ready for training!");
      }

      function startTraining() {
        if (isTraining) {
          // Stop training
          isTraining = false;
          document.getElementById("start-btn").textContent = "Start Training";
          document.getElementById("step-btn").disabled = true;
        } else {
          // Start training
          isTraining = true;
          document.getElementById("start-btn").textContent = "Stop Training";
          document.getElementById("step-btn").disabled = false;

          // If we're at the end of training, reset first
          if (episode >= maxEpisodes) {
            resetEnvironment();
          }

          runTrainingLoop();
        }
      }

      function stepTraining() {
        if (episode < maxEpisodes) {
          runEpisode();
          updateTrainingProgress();
        } else {
          logMessage("Training complete! Reset to train again.");
        }
      }

      async function runTrainingLoop() {
        while (isTraining && episode < maxEpisodes) {
          await runEpisode();
          updateTrainingProgress();

          // Add a small delay to visualize the process
          await new Promise((resolve) => setTimeout(resolve, 200));
        }

        if (episode >= maxEpisodes) {
          logMessage("Training complete!");
          isTraining = false;
          document.getElementById("start-btn").textContent = "Start Training";
        }
      }

      async function runEpisode() {
        // Reset agent position and episodic variables
        agentPos = { x: 0, y: 0 };
        episodeSteps = 0;
        totalReward = 0;
        trajectories = [];

        // Decay exploration rate over time (important for improving policy)
        explorationRate = Math.max(0.05, 0.2 * Math.pow(0.99, episode));

        renderGrid();
        updateReward(totalReward);

        // Save old policy for PPO ratio calculation
        oldPolicy = JSON.parse(JSON.stringify(policyNetwork));

        // Run episode until termination
        let done = false;
        while (!done && episodeSteps < maxStepsPerEpisode) {
          done = await executeStep();
          episodeSteps++;

          // Small delay for visualization
          await new Promise((resolve) =>
            setTimeout(resolve, animationSpeeds[animationSpeed] / 2)
          );
        }

        // Add episode reward to history
        episodeRewards.push(totalReward);

        // Run PPO update if we have enough steps
        if (trajectories.length > 0) {
          const [policyLoss, valueLoss] = updatePPO();
          policyLosses.push(policyLoss);
          valueLosses.push(valueLoss);
        }

        // Update UI
        renderPolicy();
        episode++;
        updateEpisodeCounter();

        logMessage(
          `Episode ${episode}: Reward=${totalReward.toFixed(
            2
          )}, Steps=${episodeSteps}, Exploration=${explorationRate.toFixed(2)}`
        );

        return new Promise((resolve) => setTimeout(resolve, 10));
      }

      async function executeStep() {
        const stateKey = `${agentPos.x},${agentPos.y}`;
        const policy = policyNetwork[stateKey];

        // Choose action based on policy
        const action = sampleAction(policy);

        // Store old position
        const oldPos = { ...agentPos };

        // Move agent
        moveAgent(action);

        // Calculate reward
        const reward = calculateReward(oldPos);
        totalReward += reward;
        updateReward(totalReward);

        // Check if episode is done
        const done =
          (agentPos.x === goalPos.x && agentPos.y === goalPos.y) ||
          isObstacle(agentPos.x, agentPos.y);

        // If agent hit obstacle, move it back for visualization
        if (isObstacle(agentPos.x, agentPos.y)) {
          agentPos = { ...oldPos };
        }

        // Render the grid
        renderGrid();

        // Store trajectory
        const newStateKey = `${agentPos.x},${agentPos.y}`;
        trajectories.push({
          state: stateKey,
          action,
          reward,
          nextState: newStateKey,
          done,
        });

        return done;
      }

      function sampleAction(policy) {
        // Use exploration rate to decide whether to take random action or follow policy
        if (Math.random() < explorationRate) {
          // Take random action with exploration probability
          const actions = Object.keys(policy);
          const randomIndex = Math.floor(Math.random() * actions.length);
          return actions[randomIndex];
        }

        // Otherwise sample from policy distribution
        const actions = Object.keys(policy);
        const probs = actions.map((a) => policy[a]);

        const rand = Math.random();
        let cumProb = 0;

        for (let i = 0; i < actions.length; i++) {
          cumProb += probs[i];
          if (rand < cumProb) {
            return actions[i];
          }
        }

        return actions[actions.length - 1];
      }

      function moveAgent(action) {
        // Save previous position
        const prevPos = { ...agentPos };

        // Attempt to move agent
        switch (action) {
          case "up":
            agentPos.y = Math.max(0, agentPos.y - 1);
            break;
          case "right":
            agentPos.x = Math.min(GRID_SIZE - 1, agentPos.x + 1);
            break;
          case "down":
            agentPos.y = Math.min(GRID_SIZE - 1, agentPos.y + 1);
            break;
          case "left":
            agentPos.x = Math.max(0, agentPos.x - 1);
            break;
        }

        // Check if new position is an obstacle
        if (isObstacle(agentPos.x, agentPos.y)) {
          // Revert to previous position if it hit an obstacle
          agentPos.x = prevPos.x;
          agentPos.y = prevPos.y;
          return false; // Indicate movement was blocked
        }

        return true; // Movement successful
      }

      function calculateReward(oldPos, movementSuccessful) {
        // Reward for reaching goal
        if (agentPos.x === goalPos.x && agentPos.y === goalPos.y) {
          return 10;
        }

        // Penalty for attempting to move into an obstacle (but not actually moving into it)
        if (!movementSuccessful) {
          return -1; // Reduced penalty to avoid too much negative learning
        }

        // Small penalty for each step to encourage efficiency
        let stepPenalty = -0.1;

        // Small reward for getting closer to goal (using Manhattan distance)
        const oldDistance =
          Math.abs(oldPos.x - goalPos.x) + Math.abs(oldPos.y - goalPos.y);
        const newDistance =
          Math.abs(agentPos.x - goalPos.x) + Math.abs(agentPos.y - goalPos.y);
        const proximityReward = oldDistance > newDistance ? 0.3 : -0.1; // Stronger reward for progress

        return stepPenalty + proximityReward;
      }

      function updatePPO() {
        // Get parameters from sliders
        clipRatio = parseFloat(document.getElementById("clip-ratio").value);
        learningRate = parseFloat(
          document.getElementById("learning-rate").value
        );
        ppoEpochs = parseInt(document.getElementById("epochs").value);

        // Compute returns and advantages
        const returns = [];
        const advantages = [];

        // Compute returns (discounted sum of future rewards)
        let discountedReturn = 0;
        for (let i = trajectories.length - 1; i >= 0; i--) {
          const transition = trajectories[i];
          discountedReturn =
            transition.reward +
            gamma * (transition.done ? 0 : discountedReturn);
          returns.unshift(discountedReturn);
        }

        // Compute advantages using Generalized Advantage Estimation (GAE)
        let lastGaeAdvantage = 0;
        for (let i = trajectories.length - 1; i >= 0; i--) {
          const transition = trajectories[i];
          const stateKey = transition.state;
          const nextStateKey = transition.nextState;

          const currentValue = valueNetwork[stateKey];
          const nextValue = transition.done ? 0 : valueNetwork[nextStateKey];

          // TD error
          const delta = transition.reward + gamma * nextValue - currentValue;

          // GAE
          lastGaeAdvantage = delta + gamma * lambda * lastGaeAdvantage;
          advantages.unshift(lastGaeAdvantage);
        }

        // Normalize advantages for more stable learning
        const meanAdvantage =
          advantages.reduce((a, b) => a + b, 0) / advantages.length;
        const stdAdvantage =
          Math.sqrt(
            advantages.reduce((a, b) => a + Math.pow(b - meanAdvantage, 2), 0) /
              advantages.length
          ) || 1; // Avoid division by zero

        for (let i = 0; i < advantages.length; i++) {
          advantages[i] =
            (advantages[i] - meanAdvantage) / (stdAdvantage + 1e-8);
        }

        // Store losses for metrics
        let totalPolicyLoss = 0;
        let totalValueLoss = 0;

        // Backup old policy for PPO ratio calculation
        const oldPolicyBackup = JSON.parse(JSON.stringify(policyNetwork));

        // Multiple epochs of optimization on the same data (key PPO feature)
        for (let epoch = 0; epoch < ppoEpochs; epoch++) {
          // Update policy and value networks for each step in the trajectory
          for (let i = 0; i < trajectories.length; i++) {
            const transition = trajectories[i];
            const stateKey = transition.state;
            const action = transition.action;

            // Get old action probability
            const oldActionProb = oldPolicy[stateKey][action];

            // Get current action probability
            const currentActionProb = policyNetwork[stateKey][action];

            // Compute probability ratio (crucial for PPO)
            const ratio = currentActionProb / Math.max(oldActionProb, 1e-8);

            // Get advantage for this action
            const advantage = advantages[i];

            // Compute unclipped and clipped surrogate objectives
            const unclippedObjective = ratio * advantage;
            const clippedRatio = Math.max(
              Math.min(ratio, 1 + clipRatio),
              1 - clipRatio
            );
            const clippedObjective = clippedRatio * advantage;

            // PPO's clipped surrogate objective (core of PPO)
            const surrogateObjective = Math.min(
              unclippedObjective,
              clippedObjective
            );

            // Compute policy gradient
            // Note: In PPO, we maximize the objective, so negative for gradient ascent
            const policyLoss = -surrogateObjective;
            totalPolicyLoss += policyLoss;

            // Value loss (using returns as targets)
            const valueTarget = returns[i];
            const valuePrediction = valueNetwork[stateKey];
            const valueLoss = 0.5 * Math.pow(valueTarget - valuePrediction, 2);
            totalValueLoss += valueLoss;

            // Update value network with gradient descent
            valueNetwork[stateKey] +=
              learningRate * (valueTarget - valuePrediction);

            // Compute policy update based on whether we're using clipped or unclipped objective
            const useClippedObjective = unclippedObjective > clippedObjective;
            const policyGradient =
              learningRate * advantage * (useClippedObjective ? 0 : 1);

            // Apply policy gradient update
            // Increase probability of the taken action if it was good (positive advantage)
            // Decrease probability if it was bad (negative advantage)
            let newProb = policyNetwork[stateKey][action] + policyGradient;

            // Ensure probability stays positive (important for ratio calculation)
            newProb = Math.max(newProb, 0.01);
            policyNetwork[stateKey][action] = newProb;

            // Normalize probabilities to ensure they sum to 1
            const sumProb = Object.values(policyNetwork[stateKey]).reduce(
              (a, b) => a + b,
              0
            );
            for (const a in policyNetwork[stateKey]) {
              policyNetwork[stateKey][a] /= sumProb;
            }

            // Add some exploration (entropy bonus)
            // This is crucial for avoiding local optima
            if (i % 5 === 0) {
              // Apply periodically to maintain some exploration
              for (const a in policyNetwork[stateKey]) {
                // Slightly nudge probabilities toward uniform
                policyNetwork[stateKey][a] =
                  0.95 * policyNetwork[stateKey][a] + 0.05 * 0.25;
              }
              // Re-normalize
              const sumProb = Object.values(policyNetwork[stateKey]).reduce(
                (a, b) => a + b,
                0
              );
              for (const a in policyNetwork[stateKey]) {
                policyNetwork[stateKey][a] /= sumProb;
              }
            }
          }
        }

        // Calculate average losses
        const avgPolicyLoss =
          totalPolicyLoss / (trajectories.length * ppoEpochs);
        const avgValueLoss = totalValueLoss / (trajectories.length * ppoEpochs);

        // Log progress periodically
        if (episode % 5 === 0) {
          logMessage(
            `Episode ${episode}: Average Policy Loss = ${avgPolicyLoss.toFixed(
              4
            )}, Value Loss = ${avgValueLoss.toFixed(4)}`
          );
        }

        return [avgPolicyLoss, avgValueLoss];
      }

      function updateReward(reward) {
        document.getElementById("reward-value").textContent = reward.toFixed(2);
      }

      function updateEpisodeCounter() {
        document.getElementById(
          "episode-counter"
        ).textContent = `Episodes: ${episode} / ${maxEpisodes}`;
        document.getElementById("training-progress").style.width = `${
          (episode / maxEpisodes) * 100
        }%`;
      }

      function updateTrainingProgress() {
        // Update charts with the latest data
        // In a real implementation, you would update charts here

        // Show progress
        updateEpisodeCounter();
      }

      function updateSliderValue(id) {
        const slider = document.getElementById(id);
        const valueDisplay = document.getElementById(`${id}-value`);
        valueDisplay.textContent = slider.value;

        // Update corresponding variables
        if (id === "clip-ratio") clipRatio = parseFloat(slider.value);
        if (id === "learning-rate") learningRate = parseFloat(slider.value);
        if (id === "epochs") ppoEpochs = parseInt(slider.value);
      }

      function logMessage(message) {
        const logContainer = document.getElementById("log-container");
        const logEntry = document.createElement("div");
        logEntry.classList.add("log-entry");
        logEntry.textContent = message;
        logContainer.appendChild(logEntry);
        logContainer.scrollTop = logContainer.scrollHeight;
      }

      function openTab(tabId) {
        // Hide all tab contents
        const tabContents = document.getElementsByClassName("tab-content");
        for (let i = 0; i < tabContents.length; i++) {
          tabContents[i].classList.remove("active");
        }

        // Remove active class from tab buttons
        const tabButtons = document.getElementsByClassName("tab-button");
        for (let i = 0; i < tabButtons.length; i++) {
          tabButtons[i].classList.remove("active");
        }

        // Show selected tab content and mark button as active
        document.getElementById(tabId).classList.add("active");
        const activeButton = document.querySelector(
          `.tab-button[onclick="openTab('${tabId}')"]`
        );
        activeButton.classList.add("active");
      }

      function showPopup(title, content) {
        document.getElementById("popup-title").textContent = title;
        document.getElementById("popup-content").innerHTML = content;
        document.getElementById("popup-overlay").style.display = "block";
        document.getElementById("popup").style.display = "block";
      }

      function closePopup() {
        document.getElementById("popup-overlay").style.display = "none";
        document.getElementById("popup").style.display = "none";
      }

      // Initialize the environment when the page loads
      window.onload = function () {
        initializeEnvironment();
        logMessage('Environment initialized. Click "Start Training" to begin!');

        // Show concept popup with a delay
        setTimeout(() => {
          showPopup(
            "Welcome to PPO Simulation",
            `
                    <p>This simulation demonstrates Proximal Policy Optimization (PPO), a reinforcement learning algorithm.</p>
                    <p>In this grid world:</p>
                    <ul>
                        <li>The agent (blue circle) must learn to navigate to the goal (green square)</li>
                        <li>You can place obstacles (red squares) by clicking the "Place Obstacles" button</li>
                        <li>The agent receives rewards for approaching the goal and penalties for hitting obstacles</li>
                        <li>PPO helps the agent learn efficiently by preventing large policy updates</li>
                    </ul>
                    <p>Try experimenting with different parameters to see how they affect learning!</p>
                `
          );
        }, 1000);
      };
      // Animation speed control
      let animationSpeed = "normal";
      const animationSpeeds = {
        slow: 300,
        normal: 100,
        fast: 20,
      };

      function toggleAnimationSpeed() {
        const speedBtn = document.getElementById("animation-speed-btn");

        if (animationSpeed === "slow") {
          animationSpeed = "normal";
          speedBtn.textContent = "Animation Speed: Normal";
        } else if (animationSpeed === "normal") {
          animationSpeed = "fast";
          speedBtn.textContent = "Animation Speed: Fast";
        } else {
          animationSpeed = "slow";
          speedBtn.textContent = "Animation Speed: Slow";
        }
      }

      // Update animation speed in relevant functions
      async function runTrainingLoop() {
        while (isTraining && episode < maxEpisodes) {
          await runEpisode();
          updateTrainingProgress();

          // Use dynamic animation speed
          await new Promise((resolve) =>
            setTimeout(resolve, animationSpeeds[animationSpeed])
          );
        }

        if (episode >= maxEpisodes) {
          logMessage("Training complete!");
          isTraining = false;
          document.getElementById("start-btn").textContent = "Start Training";
        }
      }

      async function executeStep() {
        const stateKey = `${agentPos.x},${agentPos.y}`;
        const policy = policyNetwork[stateKey];

        // Choose action based on policy
        const action = sampleAction(policy);

        // Store old position
        const oldPos = { ...agentPos };

        // Move agent
        const movementSuccessful = moveAgent(action);

        // Calculate reward
        const reward = calculateReward(oldPos, movementSuccessful);
        totalReward += reward;
        updateReward(totalReward);

        // Check if episode is done
        const done = agentPos.x === goalPos.x && agentPos.y === goalPos.y;

        // Render the grid
        renderGrid();

        // Store trajectory
        const newStateKey = `${agentPos.x},${agentPos.y}`;
        trajectories.push({
          state: stateKey,
          action,
          reward,
          nextState: newStateKey,
          done,
        });

        // Use dynamic animation speed
        await new Promise((resolve) =>
          setTimeout(resolve, animationSpeeds[animationSpeed] / 2)
        );

        return done;
      }
    </script>

    <footer
      style="
        text-align: center;
        margin-top: 30px;
        padding: 15px;
        background-color: #f8f9fa;
        border-top: 1px solid #ddd;
      "
    >
      &copy; 2025 Pejman Ebrahimi - All Rights Reserved
    </footer>
  </body>
</html>