Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
3 |
import torch
|
4 |
import gradio as gr
|
5 |
|
6 |
-
# Model
|
7 |
model_name = "Qwen/Qwen2.5-3B-Instruct"
|
8 |
|
9 |
# Load tokenizer and model
|
@@ -18,21 +18,16 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
18 |
trust_remote_code=True,
|
19 |
)
|
20 |
|
21 |
-
# Chat function
|
22 |
def respond(message, history):
|
23 |
messages = [{"role": "user", "content": message}]
|
24 |
-
|
25 |
-
# Apply chat template
|
26 |
prompt = tokenizer.apply_chat_template(
|
27 |
messages,
|
28 |
tokenize=False,
|
29 |
add_generation_prompt=True
|
30 |
)
|
31 |
-
|
32 |
-
# Tokenize
|
33 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
34 |
|
35 |
-
# Generate
|
36 |
with torch.no_grad():
|
37 |
outputs = model.generate(
|
38 |
**inputs,
|
@@ -42,24 +37,23 @@ def respond(message, history):
|
|
42 |
do_sample=True,
|
43 |
pad_token_id=tokenizer.eos_token_id,
|
44 |
)
|
45 |
-
|
46 |
-
# Decode response
|
47 |
response = tokenizer.decode(
|
48 |
-
outputs[0][inputs[
|
49 |
skip_special_tokens=True
|
50 |
)
|
51 |
return response
|
52 |
|
53 |
-
# Gradio
|
|
|
54 |
demo = gr.ChatInterface(
|
55 |
fn=respond,
|
56 |
-
title="Qwen2.5-3B
|
57 |
-
description="Ask me anything! I'm a
|
58 |
examples=[
|
59 |
-
"Explain
|
60 |
-
"Write a Python function to
|
61 |
-
"Solve:
|
62 |
-
]
|
63 |
)
|
64 |
|
65 |
# Launch
|
|
|
3 |
import torch
|
4 |
import gradio as gr
|
5 |
|
6 |
+
# Model name
|
7 |
model_name = "Qwen/Qwen2.5-3B-Instruct"
|
8 |
|
9 |
# Load tokenizer and model
|
|
|
18 |
trust_remote_code=True,
|
19 |
)
|
20 |
|
21 |
+
# Chat function
|
22 |
def respond(message, history):
|
23 |
messages = [{"role": "user", "content": message}]
|
|
|
|
|
24 |
prompt = tokenizer.apply_chat_template(
|
25 |
messages,
|
26 |
tokenize=False,
|
27 |
add_generation_prompt=True
|
28 |
)
|
|
|
|
|
29 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
30 |
|
|
|
31 |
with torch.no_grad():
|
32 |
outputs = model.generate(
|
33 |
**inputs,
|
|
|
37 |
do_sample=True,
|
38 |
pad_token_id=tokenizer.eos_token_id,
|
39 |
)
|
|
|
|
|
40 |
response = tokenizer.decode(
|
41 |
+
outputs[0][inputs["input_ids"].shape[-1]:],
|
42 |
skip_special_tokens=True
|
43 |
)
|
44 |
return response
|
45 |
|
46 |
+
# Create Gradio ChatInterface
|
47 |
+
# Gradio 3.50.2 supports ChatInterface fully
|
48 |
demo = gr.ChatInterface(
|
49 |
fn=respond,
|
50 |
+
title="Qwen2.5-3B Chatbot",
|
51 |
+
description="Ask me anything! I'm a smart AI assistant by Alibaba Cloud.",
|
52 |
examples=[
|
53 |
+
"Explain relativity in simple terms.",
|
54 |
+
"Write a Python function to reverse a string.",
|
55 |
+
"Solve: 2x + 8 = 20"
|
56 |
+
]
|
57 |
)
|
58 |
|
59 |
# Launch
|