File size: 14,907 Bytes
80ff985
726017c
 
80ff985
 
 
726017c
 
80ff985
 
 
 
 
 
 
a25975f
 
 
80ff985
 
 
 
 
 
 
 
726017c
 
 
 
 
 
 
 
304ec58
c69c2b8
726017c
21aa22a
 
 
726017c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80ff985
 
cb87cf5
 
 
80ff985
 
 
 
 
 
 
 
 
 
 
ccd8cad
 
 
 
80ff985
 
 
 
 
 
726017c
 
 
 
 
 
 
 
 
 
 
 
 
 
304ec58
 
 
726017c
 
 
 
 
 
 
 
 
304ec58
 
 
 
e101a7b
304ec58
726017c
 
 
 
 
 
 
 
 
 
 
 
304ec58
 
 
 
 
 
 
e101a7b
 
 
304ec58
 
 
726017c
 
ccd8cad
80ff985
726017c
 
 
 
 
 
 
cb87cf5
726017c
 
 
 
 
 
 
 
 
 
cb87cf5
726017c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
304ec58
726017c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80ff985
 
ccd8cad
80ff985
 
cb87cf5
 
 
a25975f
cb87cf5
 
 
 
80ff985
a25975f
80ff985
 
 
ccd8cad
80ff985
 
 
 
 
 
 
 
ccd8cad
80ff985
 
 
 
 
cb87cf5
 
 
 
 
 
 
80ff985
 
 
 
 
 
 
 
c69c2b8
80ff985
 
 
 
 
 
 
 
 
ccd8cad
 
 
 
 
 
 
 
a25975f
ccd8cad
 
 
 
 
 
 
 
 
 
 
 
80ff985
 
ccd8cad
 
 
 
 
 
 
726017c
 
 
 
 
 
 
 
 
 
80ff985
 
 
 
 
 
 
ccd8cad
80ff985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccd8cad
 
80ff985
ccd8cad
80ff985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccd8cad
 
80ff985
 
 
 
 
 
 
 
 
726017c
 
 
 
 
80ff985
726017c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
import base64
import io
import time
import streamlit as st
from openai import OpenAI
import os
from PIL import Image
from utils import pprint, getFontsUrl

# Load environment variables
from dotenv import load_dotenv
load_dotenv()

client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))

# model = "gpt-4o-mini"
model = "gpt-4o"

# Set up page configuration
st.set_page_config(
    page_title="Magic Recipe Decoder 🍽️",
    page_icon="πŸ₯˜",
    layout="wide",
    initial_sidebar_state="expanded"
)
# Custom CSS for styling
st.markdown(
    f"""
    <head>
        <link href="{getFontsUrl()}" rel="stylesheet">
    </head>
    """ """
    <style>
    h1 {
        font-family: 'Whisper' !important;
        # font-size: 2.2rem !important;
    }
    h3 {
        font-size: 1.5rem !important;
    }
    .big-font {
        font-size:20px !important;
        color: #2C3E50;
    }
    .highlight-box {
        background-color: #F5F5F5;  /* Soft light gray */
        border-radius: 10px;
        padding: 20px;
        margin-bottom: 20px;
        color: #333333;  /* Very dark gray for text */
        border: 1px solid #E0E0E0;  /* Subtle border */
    }
    .highlight-box h1 {
        color: #1A5F7A;  /* Deep teal for main heading */
        font-size: 24px;
        margin-bottom: 15px;
    }
    .highlight-box h2 {
        color: #2C7DA0;  /* Slightly lighter teal for subheadings */
        font-size: 20px;
        margin-top: 15px;
        margin-bottom: 10px;
    }
    .highlight-box h3 {
        color: #468FAF;  /* Even lighter teal for smaller headings */
        font-size: 18px;
        margin-top: 10px;
        margin-bottom: 8px;
    }
    .highlight-box p {
        color: #333333;  /* Dark gray for paragraphs */
        line-height: 1.6;
    }
    </style>
    """,
    unsafe_allow_html=True
)

# Initialize session state
if "ipAddress" not in st.session_state:
    st.session_state.ipAddress = st.context.headers.get("x-forwarded-for")

if 'cooking_equipment' not in st.session_state:
    st.session_state.cooking_equipment = {
        'Stove': True,
        'Oven': False,
        'Microwave': False,
        'Blender': False,
        'Pressure Cooker': False
    }
if 'original_recipe' not in st.session_state:
    st.session_state.original_recipe = None

# Add language selection to session state
if 'recipe_language' not in st.session_state:
    st.session_state.recipe_language = 'English'


def google_image_search(query):
    """Placeholder for image search - you'll need to implement actual image search API"""
    return "https://via.placeholder.com/300x200.png?text=" + query.replace(" ", "+")


def resize_image(image_base64, max_size=1024):
    """
    Resize an image from base64 to max dimension of 1024 pixels while maintaining aspect ratio
    
    Args:
        image_base64 (str): Base64 encoded image
        max_size (int): Maximum dimension for the image
    
    Returns:
        str: Resized image as base64 encoded string
    """
    # Decode base64 image
    image_bytes = base64.b64decode(image_base64)
    
    # Log original image size
    original_size = len(image_bytes)
    
    # Open image with Pillow
    img = Image.open(io.BytesIO(image_bytes))
    
    # Calculate resize ratio
    width, height = img.size
    resize_ratio = min(max_size / width, max_size / height)
    
    # If image is already smaller than max_size, return original
    if resize_ratio >= 1:
        pprint({
            "function": "resize_image",
            "result": "no_resize_needed",
            "original_size_bytes": original_size,
            "original_size_kb": round(original_size / 1024)
        })
        return image_base64
    
    # Calculate new dimensions
    new_width = int(width * resize_ratio)
    new_height = int(height * resize_ratio)
    
    # Resize image
    resized_img = img.resize((new_width, new_height), Image.LANCZOS)
    
    # Convert back to base64
    buffered = io.BytesIO()
    resized_img.save(buffered, format=img.format)
    resized_bytes = buffered.getvalue()
    resized_base64 = base64.b64encode(resized_bytes).decode('utf-8')
    
    # Log resized image size
    resized_size = len(resized_bytes)
    pprint({
        "function": "resize_image",
        "original_size_kb": round(original_size / 1024),
        "resized_size_kb": round(resized_size / 1024),
        "size_reduction_percentage": round(((original_size - resized_size) / original_size) * 100)
    })
    
    return resized_base64


def analyze_and_generate_recipe(uploaded_image, available_equipment=None, language='English'):
    """Analyze food image and generate recipe in a single LLM call"""
    progress_stages = [
        {"message": "πŸ” Scanning the delicious image...", "progress": 10},
        {"message": "🧐 Identifying culinary ingredients...", "progress": 30},
        {"message": "🍳 Consulting virtual chef's expertise...", "progress": 50},
        {"message": "πŸ“ Crafting personalized recipe...", "progress": 70},
        {"message": "🌟 Finalizing gourmet instructions...", "progress": 90}
    ]

    # Create a progress bar
    progress_bar = st.progress(0)
    status_text = st.empty()

    try:
        # Update progress stages
        for stage in progress_stages:
            status_text.text(stage["message"])
            progress_bar.progress(stage["progress"])
            time.sleep(1)  # Short delay between stages

        # Resize the image before sending to LLM
        resized_image_base64 = resize_image(uploaded_image)

        # Prepare the system and user messages
        messages = [
            {
                "role": "system", 
                "content": f"""You are a professional chef and food analyst. 
                When analyzing a food image, provide a comprehensive recipe in {language} that considers:
                1. Detailed food description
                2. Complete ingredient list
                3. Cooking method
                4. Step-by-step instructions"""
            },
            {
                "role": "user", 
                "content": [
                    {
                        "type": "image_url", 
                        "image_url": {"url": f"data:image/jpeg;base64,{resized_image_base64}"}
                    },
                    {
                        "type": "text", 
                        "text": f"""Analyze this food image and generate a detailed recipe in {language}.
                        
                        {'Available cooking equipment: ' + ', '.join(available_equipment) if available_equipment else 'No equipment restrictions'}
                        
                        If specific equipment is available, prioritize cooking methods that use those tools.
                        
                        Provide:
                        - Detailed food description
                        - Ingredient list
                        - Cooking method adapted to available equipment
                        - Difficulty level
                        - Estimated cooking time
                        - Precise, step-by-step instructions
                        
                        Use markdown formatting for clear presentation."""
                    }
                ]
            }
        ]

        # Log API call details
        pprint({
            "function": "analyze_and_generate_recipe",
            "model": model,
            "language": language,
            "available_equipment": available_equipment
        })
        
        # Make the LLM call
        status_text.text("πŸš€ Generating recipe with AI...")
        progress_bar.progress(95)
        
        response = client.chat.completions.create(
            model=model,
            messages=messages
        )

        # Final progress update
        status_text.text("βœ… Recipe generated successfully!")
        progress_bar.progress(100)
        
        # Clear the progress bar and status text after a short delay
        time.sleep(1)
        progress_bar.empty()
        status_text.empty()

        # Log response details
        pprint({
            "function": "analyze_and_generate_recipe_response",
            "tokens_used": response.usage.total_tokens if response.usage else None,
            "response_length": len(response.choices[0].message.content)
        })
        
        return response.choices[0].message.content
    
    except Exception as e:
        # Clear progress indicators in case of error
        progress_bar.empty()
        status_text.empty()
        
        st.error(f"Error analyzing image and generating recipe: {e}")
        return None


def refine_recipe(original_recipe, user_refinement, language='English'):
    """Refine the recipe based on user input"""
    try:
        # Log API call details
        pprint({
            "function": "refine_recipe",
            "model": model,
            "language": language,
            "user_refinement_length": len(user_refinement)
        })

        response = client.chat.completions.create(
            model=model,
            messages=[
                {
                    "role": "system", 
                    "content": f"You are a professional chef who can modify recipes based on specific user preferences. Respond in {language}."
                },
                {
                    "role": "user", 
                    "content": f"""Original Recipe:
                    {original_recipe}
                    
                    User Refinement Request: {user_refinement}
                    
                    Please modify the recipe according to the user's preferences in {language}. 
                    Provide the updated recipe with clear instructions, 
                    maintaining the original recipe's core structure."""
                }
            ]
        )

        # Log response details
        pprint({
            "function": "refine_recipe_response",
            "tokens_used": response.usage.total_tokens if response.usage else None,
            "response_length": len(response.choices[0].message.content)
        })
        
        return response.choices[0].message.content
    except Exception as e:
        st.error(f"Error refining recipe: {e}")
        return None


# Main Streamlit App
st.title("πŸ₯˜ Magic Recipe")
st.markdown("*Discover the secrets behind your favorite dishes!*", unsafe_allow_html=True)

# Sidebar for Cooking Equipment
st.sidebar.header("πŸ”§ Cooking Equipment")
st.sidebar.markdown("Check the equipment you have available:")

for equipment, available in st.session_state.cooking_equipment.items():
    st.session_state.cooking_equipment[equipment] = st.sidebar.checkbox(equipment, value=available)

# Language Selection
st.sidebar.header("🌐 Recipe Language")
st.sidebar.markdown("Choose your preferred language:")

# Top 5 Indian languages + English
languages = [
    'English', 
    'Hindi', 
    'Hinglish',
    'Bengali', 
    'Telugu', 
    'Marathi', 
    'Tamil'
]

st.session_state.recipe_language = st.sidebar.selectbox(
    "Select Recipe Language", 
    languages, 
    index=0
)

# Image Upload and Analysis Section
st.markdown("### πŸ“Έ Upload Your Food Image", unsafe_allow_html=True)

# Add camera input option
img_source = st.radio("Choose image source:", ["Upload from device", "Take a photo"])

if img_source == "Upload from device":
    uploaded_file = st.file_uploader("Choose an image...", type=['jpg', 'jpeg', 'png'])
else:
    uploaded_file = st.camera_input(
        "Take a photo of your dish", 
        help="Please hold your device vertically for best results",
        # Set aspect ratio to portrait (3:4)
        key="portrait_camera",
        args={
            "landscape": False,  # Force portrait mode
            "aspectRatio": 3 / 4   # Portrait aspect ratio
        }
    )

# Food Analysis and Recipe Generation
if uploaded_file is not None:
    # Display uploaded image
    col1, col2 = st.columns(2)
    
    with col1:
        st.image(uploaded_file, caption='Uploaded Image', use_container_width=True)
    
    with col2:
        # Checkbox to use available cooking equipment
        use_available_equipment = st.checkbox("Use only available cooking equipment", value=False)
        
        # Prepare available equipment list if checkbox is selected
        available_equipment = []
        if use_available_equipment:
            available_equipment = [
                equip for equip, available in st.session_state.cooking_equipment.items() 
                if available
            ]
        
        # Analyze and Generate Recipe
        if st.button("Generate Recipe"):
            # Analyze image and generate recipe
            image_base64 = base64.b64encode(uploaded_file.getvalue()).decode('utf-8')
            recipe = analyze_and_generate_recipe(
                image_base64, 
                available_equipment if use_available_equipment else None,
                st.session_state.recipe_language
            )

            if recipe:
                # Store original recipe in session state
                st.session_state.original_recipe = recipe
                
                # Display the generated recipe
                st.markdown("### 🍳 Generated Recipe", unsafe_allow_html=True)
                st.markdown(f"<div class='highlight-box'>{recipe}</div>", unsafe_allow_html=True)

    # Recipe Refinement Section
    if st.session_state.original_recipe:
        st.markdown("### πŸ§‘β€πŸ³ Refine Your Recipe", unsafe_allow_html=True)
        
        # Refinement Prompt
        user_refinement = st.text_input("Want to modify the recipe? Add your preferences here:")
        
        if st.button("Refine Recipe"):
            if user_refinement:
                # Refine the recipe
                with st.spinner('πŸ”ͺ Refining your recipe...'):
                    refined_recipe = refine_recipe(
                        st.session_state.original_recipe, 
                        user_refinement,
                        st.session_state.recipe_language
                    )
                
                if refined_recipe:
                    # Display the refined recipe
                    st.markdown("### 🍽️ Refined Recipe", unsafe_allow_html=True)
                    st.markdown(f"<div class='highlight-box'>{refined_recipe}</div>", unsafe_allow_html=True)
            else:
                st.warning("Please enter refinement preferences.")

    # # Visual References
    # st.markdown("### πŸ–ΌοΈ Visual References", unsafe_allow_html=True)
    # if st.session_state.original_recipe:
    #     food_name = st.session_state.original_recipe.split('\n')[0]
    #     image_urls = [google_image_search(food_name) for _ in range(3)]
        
    #     cols = st.columns(3)
    #     for i, url in enumerate(image_urls):
    #         cols[i].image(url, use_container_width=True)