File size: 5,423 Bytes
34a64af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import sys 
print("Python version")
print (sys. version) 


from typing import Annotated, Sequence, TypedDict
import operator
import functools

from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.messages import BaseMessage, HumanMessage, SystemMessage
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_experimental.tools import PythonREPLTool
from langchain.agents import create_openai_tools_agent
from langchain_huggingface import HuggingFacePipeline
from langgraph.graph import StateGraph, END

from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline

# SETUP: HuggingFace Model and Pipeline
#name = "meta-llama/Llama-3.2-1B"
#name="deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
#name="deepseek-ai/deepseek-llm-7b-chat"
name="openai-community/gpt2"
#name="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
#name="microsoft/Phi-3.5-mini-instruct"
#name="Qwen/Qwen2.5-7B-Instruct-1M"

tokenizer = AutoTokenizer.from_pretrained(name,truncation=True)
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(name)

pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    device_map="auto",
    max_new_tokens=500,  # text to generate for outputs
)
print ("pipeline is created")

# Wrap in LangChain's HuggingFacePipeline
llm = HuggingFacePipeline(pipeline=pipe)

# Members and Final Options
members = ["Researcher", "Coder"]
options = ["FINISH"] + members

# Supervisor prompt
system_prompt = (
    "You are a supervisor tasked with managing a conversation between the following workers: {members}."
    " Given the following user request, respond with the workers to act next. Each worker will perform a task"
    " and respond with their results and status. When all workers are finished, respond with FINISH."
)

# Prompt template required for the workflow
prompt = ChatPromptTemplate.from_messages(
    [
        ("system", system_prompt),
        MessagesPlaceholder(variable_name="messages"),
        ("system", "Given the conversation above, who should act next? Or Should we FINISH? Select one of: {options}"),
    ]
).partial(options=str(options), members=", ".join(members))

print ("Prompt Template created")

# Supervisor routing logic
def route_tool_response(llm_response):
    """
    Parse the LLM response to determine the next step based on routing logic.
    """
    if "FINISH" in llm_response:
        return "FINISH"
    for member in members:
        if member in llm_response:
            return member
    return "Unknown"

def supervisor_chain(state):
    """
    Supervisor logic to interact with HuggingFacePipeline and decide the next worker.
    """
    messages = state.get("messages", [])
    user_prompt = prompt.format(messages=messages)

    try:
        llm_response = pipe(user_prompt, max_new_tokens=500)[0]["generated_text"]
    except Exception as e:
        raise RuntimeError(f"LLM processing error: {e}")

    next_action = route_tool_response(llm_response)
    return {"next": next_action}

# AgentState definition
class AgentState(TypedDict):
    messages: Annotated[Sequence[BaseMessage], operator.add]
    next: str

# Create tools
tavily_tool = TavilySearchResults(max_results=5)
python_repl_tool = PythonREPLTool()

# Create agents with their respective prompts
research_agent = create_openai_tools_agent(
    llm=llm,
    tools=[tavily_tool],
    prompt=ChatPromptTemplate.from_messages(
        [
            SystemMessage(content="You are a web researcher."),
            MessagesPlaceholder(variable_name="messages"),
            MessagesPlaceholder(variable_name="agent_scratchpad"),  # Add required placeholder
        ]
    ),
)

print ("Created agents with their respective prompts")

code_agent = create_openai_tools_agent(
    llm=llm,
    tools=[python_repl_tool],
    prompt=ChatPromptTemplate.from_messages(
        [
            SystemMessage(content="You may generate safe Python code for analysis."),
            MessagesPlaceholder(variable_name="messages"),
            MessagesPlaceholder(variable_name="agent_scratchpad"),  # Add required placeholder
        ]
    ),
)


print ("create_openai_tools_agent")


# Create the workflow
workflow = StateGraph(AgentState)

# Nodes
workflow.add_node("Researcher", research_agent)  # Pass the agent directly (no .run required)
workflow.add_node("Coder", code_agent)          # Pass the agent directly
workflow.add_node("supervisor", supervisor_chain)

# Add edges for workflow transitions
for member in members:
    workflow.add_edge(member, "supervisor")

workflow.add_conditional_edges(
    "supervisor",
    lambda x: x["next"],
    {k: k for k in members} | {"FINISH": END}  # Dynamically map workers to their actions
)

# Define entry point
workflow.set_entry_point("supervisor")

print(workflow)

# Compile the workflow
graph = workflow.compile()

from IPython.display import display, Image
display(Image(graph.get_graph().draw_mermaid_png()))

# Properly formatted initial state
initial_state = {
    "messages": [
        #HumanMessage(content="Code hello world and print it to the terminal.")  # Correct format for user input
        HumanMessage(content="Write Code for printing \"hello world\" in Python. Keep it precise.")  # Correct format for user input
    ]
}

# Execute the workflow
result = graph.invoke(initial_state)
print("Workflow Result:", result)