Spaces:
Sleeping
Sleeping
File size: 10,228 Bytes
74228a1 af25f05 a63ee98 74228a1 b8bef68 74228a1 b8bef68 74228a1 1db75e3 a4cbd1a 91e4626 a4cbd1a 1db75e3 6705813 f6f782f a63ee98 1db75e3 74228a1 2a32664 74228a1 a63ee98 f6f782f 94c8fa8 f6f782f 91e4626 74228a1 91e4626 74228a1 91e4626 74228a1 ecafb2c a63ee98 74228a1 c03c16d 74228a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
from langchain_huggingface import HuggingFacePipeline
from langchain.tools import Tool
from langchain.agents import create_react_agent
from langgraph.graph import StateGraph, END
from pydantic import BaseModel
import gradio as gr
import os
if os.environ.get("SPACES_ZERO_GPU") is not None:
import spaces
else:
class spaces:
@staticmethod
def GPU(func):
def wrapper(*args, **kwargs):
return func(*args, **kwargs)
return wrapper
@spaces.GPU
def fake_gpu():
pass
# ---------------------------------------
# Step 1: Define Hugging Face LLM (Qwen/Qwen2.5-7B-Instruct-1M)
# ---------------------------------------
def create_llm():
model_name = "Qwen/Qwen2.5-7B-Instruct-1M"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
llm_pipeline = pipeline(
task="text-generation",
model=model,
tokenizer=tokenizer,
device=-1, # CPU mode, set to 0 for GPU
max_new_tokens=200
)
return HuggingFacePipeline(pipeline=llm_pipeline)
# ---------------------------------------
# Step 2: Create Agents
# ---------------------------------------
llm = create_llm()
# Registration Agent
registration_agent = Tool(
name="registration_check",
description="Check if a patient is registered.",
func=lambda details: registration_tool(details.get("visitor_name"), details.get("visitor_mobile"))
)
# Scheduling Agent
scheduling_agent = Tool(
name="schedule_appointment",
description="Fetch available time slots for a doctor.",
func=lambda details: doctor_slots_tool(details.get("doctor_name"))
)
# Payment Agent
payment_agent = Tool(
name="process_payment",
description="Generate a payment link and confirm the payment.",
func=lambda details: confirm_payment_tool(details.get("transaction_id"))
)
# Email Agent
email_agent = Tool(
name="send_email",
description="Send appointment confirmation email to the visitor.",
func=lambda details: email_tool(
details.get("visitor_email"),
details.get("appointment_details"),
details.get("hospital_location")
)
)
# ---------------------------------------
# Step 3: Tools and Mock Functions
# ---------------------------------------
def registration_tool(visitor_name: str, visitor_mobile: str) -> bool:
registered_visitors = [{"visitor_name": "John Doe", "visitor_mobile": "1234567890"}]
return any(
v["visitor_name"] == visitor_name and v["visitor_mobile"] == visitor_mobile
for v in registered_visitors
)
def register_visitor(visitor_name: str, visitor_mobile: str) -> bool:
"""Register a new user if not already registered."""
return True # Simulate successful registration
def doctor_slots_tool(doctor_name: str):
available_slots = {
"Dr. Smith": ["10:00 AM", "2:00 PM"],
"Dr. Brown": ["12:00 PM"]
}
return available_slots.get(doctor_name, [])
def payment_tool(amount: float):
"""Generate a payment link."""
return f"http://mock-payment-link.com/pay?amount={amount}"
def confirm_payment_tool(transaction_id: str) -> dict:
"""Confirm the payment."""
if transaction_id == "TIMEOUT":
return {"status": "FAILED", "reason_code": "timeout"}
elif transaction_id == "SUCCESS":
return {"status": "SUCCESS", "reason_code": None}
else:
return {"status": "FAILED", "reason_code": "other_error"}
def email_tool(visitor_email: str, appointment_details: str, hospital_location: str) -> bool:
"""Simulate sending an email to the visitor with appointment details."""
print(f"Sending email to {visitor_email}...")
print(f"Appointment Details: {appointment_details}")
print(f"Hospital Location: {hospital_location}")
# Simulate success
return True
# ---------------------------------------
# Step 4: Define Workflow States
# ---------------------------------------
class VisitorState(BaseModel):
visitor_name: str = ""
visitor_mobile: str = ""
visitor_email: str = ""
doctor_name: str = ""
department_name: str = ""
selected_slot: str = ""
messages: list = []
payment_confirmed: bool = False
email_sent: bool = False
def input_state(state: VisitorState):
"""InputState: Collect visitor details."""
return {"messages": ["Please provide your name, mobile number, and email."], "next": "RegistrationState"}
def registration_state(state: VisitorState):
"""Registration State: Check and register visitor."""
is_registered = registration_tool(state.visitor_name, state.visitor_mobile)
print("The visitor named "+state.visitor_name+" and mobile number "+state.visitor_mobile+" registration is "+is_registered)
if is_registered:
return {"messages": ["Visitor is registered."], "next": "SchedulingState"}
else:
successfully_registered = register_visitor(state.visitor_name, state.visitor_mobile)
print("Registration of the visitor named "+state.visitor_name+" and mobile number "+state.visitor_mobile+" registration is "+is_registered)
if successfully_registered:
return {"messages": ["Visitor has been successfully registered."], "next": "SchedulingState"}
else:
return {"messages": ["Registration failed. Please try again later."], "next": END}
def scheduling_state(state: VisitorState):
"""SchedulingState: Fetch available slots for a doctor."""
available_slots = doctor_slots_tool(state.doctor_name)
if available_slots:
state.selected_slot = available_slots[0]
return {"messages": [f"Slot selected for {state.doctor_name}: {state.selected_slot}"], "next": "PaymentState"}
else:
return {"messages": [f"No available slots for {state.doctor_name}."], "next": END}
def payment_state(state: VisitorState):
"""PaymentState: Generate payment link and confirm."""
payment_link = payment_tool(500)
state.messages.append(f"Please proceed to pay at: {payment_link}")
# Simulate payment confirmation
payment_response = confirm_payment_tool("SUCCESS")
if payment_response["status"] == "SUCCESS":
state.payment_confirmed = True
return {"messages": ["Payment successful. Appointment is being finalized."], "next": "FinalState"}
elif payment_response["reason_code"] == "timeout":
return {"messages": ["Payment timed out. Retrying payment..."], "next": "PaymentState"}
else:
return {"messages": ["Payment failed due to an error. Please try again later."], "next": END}
def final_state(state: VisitorState):
"""FinalState: Send email confirmation and finalize the appointment."""
if state.payment_confirmed:
appointment_details = f"Doctor: {state.doctor_name}\nTime: {state.selected_slot}"
hospital_location = "123 Main St, Springfield, USA"
email_success = email_tool(state.visitor_email, appointment_details, hospital_location)
if email_success:
state.email_sent = True
return {"messages": [f"Appointment confirmed. Details sent to your email: {state.visitor_email}"], "next": END}
else:
return {"messages": ["Appointment confirmed, but failed to send email. Please contact support."], "next": END}
else:
return {"messages": ["Payment confirmation failed. Appointment could not be finalized."], "next": END}
# ---------------------------------------
# Step 5: Build Langgraph Workflow
# ---------------------------------------
workflow = StateGraph(VisitorState)
# Add nodes
workflow.add_node("InputState", input_state)
workflow.add_node("RegistrationState", registration_state)
workflow.add_node("SchedulingState", scheduling_state)
workflow.add_node("PaymentState", payment_state)
workflow.add_node("FinalState", final_state)
# Define edges
workflow.add_edge("InputState", "RegistrationState")
workflow.add_edge("RegistrationState", "SchedulingState")
workflow.add_edge("SchedulingState", "PaymentState")
workflow.add_edge("PaymentState", "FinalState")
# Entry Point
workflow.set_entry_point("InputState")
compiled_graph = workflow.compile()
visitor_name="Bob Joe"
visitor_mobile="123456789012"
visitor_email="[email protected]"
doctor_name="Normand Joseph"
department_name="Orthopedics"
gstate = VisitorState(
visitor_name=visitor_name,
visitor_mobile=visitor_mobile,
visitor_email=visitor_email,
doctor_name=doctor_name,
department_name=department_name,
)
# Execute workflow
#result = compiled_graph.invoke(gstate.dict())
#result = compiled_graph.invoke(gstate.model_dump())
# ---------------------------------------
# Step 6: Gradio Interface
# ---------------------------------------
def gradio_interface(visitor_name, visitor_mobile, visitor_email, doctor_name, department_name):
#Interface for Gradio application.
state = VisitorState(
visitor_name=visitor_name,
visitor_mobile=visitor_mobile,
visitor_email=visitor_email,
doctor_name=doctor_name,
department_name=department_name,
)
# Execute workflow
#result = compiled_graph.invoke(state.dict())
result = compiled_graph.invoke(state.model_dump())
print(state)
print(result)
return "\n".join(result["messages"])
#return "Here returning a string for testing gradio interface!" + visitor_name
iface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Textbox(label="Visitor Name"),
gr.Textbox(label="Visitor Mobile Number"),
gr.Textbox(label="Visitor Email"),
gr.Textbox(label="Doctor Name"),
gr.Textbox(label="Department Name"),
],
outputs="textbox"
)
# Execute the Gradio interface
if __name__ == "__main__":
iface.launch()
print(state)
print(result)
"""
import gradio as gr
import spaces
import torch
zero = torch.Tensor([0]).cuda()
print(zero.device) # <-- 'cpu' π€
@spaces.GPU
def greet(n):
print(zero.device) # <-- 'cuda:0' π€
return f"Hello {zero + n} Tensor"
demo = gr.Interface(fn=greet, inputs=gr.Number(), outputs=gr.Text())
demo.launch()
"""
|