Spaces:
Runtime error
Runtime error
File size: 9,881 Bytes
54f8009 042476d 54f8009 37f145a b6dde48 68cdba5 54f8009 154b5ed 54f8009 fd386ba 7587b04 fd386ba 7587b04 fd386ba 7587b04 fd386ba 30287f6 ff72119 fd386ba ff72119 fd386ba c4080b0 ff72119 c4080b0 8c71daf c4080b0 fd386ba 1f1d42e ad62014 fd386ba 8204451 fd386ba 8204451 fd386ba 8204451 fd386ba f37281c ff72119 fd386ba 70692d7 ff72119 70692d7 ff72119 70692d7 fd386ba 54f8009 fd386ba 4265073 70692d7 fd386ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
import gradio as gr
from huggingface_hub import InferenceClient
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("microsoft/phi-2")
#client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in messages:
print(message)
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
from typing import Annotated, Sequence, TypedDict
import operator
import functools
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.messages import BaseMessage, HumanMessage, SystemMessage
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_experimental.tools import PythonREPLTool
from langchain.agents import create_openai_tools_agent
from langchain_huggingface import HuggingFacePipeline
from langgraph.graph import StateGraph, END
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
# SETUP: HuggingFace Model and Pipeline
#name = "meta-llama/Llama-3.2-1B"
#name="deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
#name="deepseek-ai/deepseek-llm-7b-chat"
#name="openai-community/gpt2"
#name="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
#name="microsoft/Phi-3.5-mini-instruct"
name="Qwen/Qwen2.5-7B-Instruct-1M"
tokenizer = AutoTokenizer.from_pretrained(name,truncation=True)
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(name)
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device_map="auto",
max_new_tokens=500, # text to generate for outputs
)
print ("pipeline is created")
# Wrap in LangChain's HuggingFacePipeline
llm = HuggingFacePipeline(pipeline=pipe)
# Members and Final Options
members = ["Researcher", "Coder"]
options = ["FINISH"] + members
# Supervisor prompt
system_prompt = (
"You are a supervisor tasked with managing a conversation between the following workers: {members}."
" Given the following user request, respond with the workers to act next. Each worker will perform a task"
" and respond with their results and status. When all workers are finished, respond with FINISH."
)
# Prompt template required for the workflow
prompt = ChatPromptTemplate.from_messages(
[
("system", system_prompt),
MessagesPlaceholder(variable_name="messages"),
("system", "Given the conversation above, who should act next? Or Should we FINISH? Select one of: {options}"),
]
).partial(options=str(options), members=", ".join(members))
print ("Prompt Template created")
# Supervisor routing logic
def route_tool_response(llm_response: str) -> str:
"""
Parse the LLM response to determine the next step based on routing logic.
Handles unexpected or poorly structured responses gracefully.
"""
# Normalize the LLM response
#llm_response = llm_response.strip().lower() # Strip whitespace and make lowercase
# Remove any prefixes like "Assistant:" or "System:"
# if ":" in llm_response:
# llm_response = llm_response.split(":")[-1].strip()
# Check for "finish" or worker names in the response
for member in members:
#if member.lower() in llm_response:
if member in llm_response:
return member
if "finish" in llm_response:
return "FINISH"
# If no valid response is found, return a fallback error
return "Invalid"
def supervisor_chain(state):
"""
Supervisor logic to interact with HuggingFacePipeline and decide the next worker.
"""
messages = state.get("messages", [])
try:
# Construct prompt for the supervisor
user_prompt = prompt.format(messages=messages)
# Generate the LLM's response
llm_response = pipe(user_prompt, max_new_tokens=100)[0]["generated_text"]
print(f"[DEBUG] LLM Response: {llm_response.strip()}") # Log LLM raw output
# Route the response to determine the next action
next_action = route_tool_response(llm_response)
# Validate the next action
if next_action not in options:
raise ValueError(f"Invalid next action: '{next_action}'. Expected one of {options}.")
# # Initialize intermediate_steps if not already present
# if "intermediate_steps" not in state:
# state["intermediate_steps"] = []
# # Append the supervisor decision to intermediate_steps
# state["intermediate_steps"].append(
# {"supervisor": "decision", "next_action": next_action}
# )
print(f"[DEBUG] Next action decided: {next_action}") # Log decision
return {"next": next_action, "messages": messages}
# return {"next": next_action, "messages": messages, "intermediate_steps": state["intermediate_steps"]}
except Exception as e:
print(f"[ERROR] Supervisor chain failed: {e}")
raise RuntimeError(f"Supervisor logic error: {str(e)}")
# AgentState definition
class AgentState(TypedDict):
messages: Annotated[Sequence[BaseMessage], operator.add]
next: str
# Create tools
tavily_tool = TavilySearchResults(max_results=5)
python_repl_tool = PythonREPLTool()
# Create agents with their respective prompts
research_agent = create_openai_tools_agent(
llm=llm,
tools=[tavily_tool],
prompt=ChatPromptTemplate.from_messages(
[
SystemMessage(content="You are a web researcher."),
MessagesPlaceholder(variable_name="messages"),
MessagesPlaceholder(variable_name="agent_scratchpad"), # Add required placeholder
]
),
)
print ("Created agents with their respective prompts")
code_agent = create_openai_tools_agent(
llm=llm,
tools=[python_repl_tool],
prompt=ChatPromptTemplate.from_messages(
[
SystemMessage(content="You may generate safe Python code for analysis."),
MessagesPlaceholder(variable_name="messages"),
MessagesPlaceholder(variable_name="agent_scratchpad"), # Add required placeholder
]
),
)
print ("create_openai_tools_agent")
# Create the workflow
workflow = StateGraph(AgentState)
# Nodes
workflow.add_node("Researcher", research_agent) # Pass the agent directly (no .run required)
workflow.add_node("Coder", code_agent) # Pass the agent directly
workflow.add_node("supervisor", supervisor_chain)
# Add edges for workflow transitions
for member in members:
workflow.add_edge(member, "supervisor")
#workflow.add_conditional_edges(
# "supervisor",
# lambda x: x["next"],
# {k: k for k in members} | {"FINISH": END} # Dynamically map workers to their actions
#)
workflow.add_conditional_edges(
"supervisor",
lambda x: x["next"],
{"Researcher":"Researcher","Coder":"Coder","FINISH": END}
)
print("[DEBUG] Workflow edges added: supervisor -> members/FINISH based on 'next'")
# Define entry point
workflow.set_entry_point("supervisor")
print(workflow)
# Compile the workflow
graph = workflow.compile()
from IPython.display import display, Image
display(Image(graph.get_graph().draw_mermaid_png()))
# Properly formatted initial state
initial_state = {
"messages": [
#HumanMessage(content="Code hello world and print it to the terminal.") # Correct format for user input
HumanMessage(content="Write Code for printing \"hello world\" in Python. Keep it precise.") # Correct format for user input
]
# ,
# "intermediate_steps": [] # Add this to track progress if needed
}
# Properly formatted second test state
second_test = {
"messages": [
HumanMessage(content="How is the weather in Sanfrancisco and Bangalore? Give research results") # Correct format for user input
]
# ,
# "intermediate_steps": [] # Add this to track progress if needed
}
if __name__ == "__main__":
#demo.launch()
# Execute the workflow
try:
#print(f"[TRACE] Initial workflow state: {initial_state}")
#result = graph.invoke(initial_state)
#print("[INFO] Workflow Execution Complete.")
#print(f"[TRACE] Workflow Result: {result}") # Final workflow result
print(f"[TRACE] Initial workflow state: {second_test}")
result2 = graph.invoke(second_test)
print("[INFO] Workflow Execution Complete.")
print(f"[TRACE] Workflow Result: {result2}") # Final workflow result
except Exception as e:
print(f"[ERROR] Workflow execution failed: {e}")
|