File size: 9,881 Bytes
54f8009
 
 
042476d
54f8009
 
 
37f145a
b6dde48
68cdba5
 
54f8009
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
154b5ed
 
 
54f8009
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd386ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7587b04
fd386ba
 
7587b04
 
 
fd386ba
 
 
7587b04
 
fd386ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30287f6
ff72119
 
 
fd386ba
ff72119
 
 
 
fd386ba
c4080b0
ff72119
 
c4080b0
8c71daf
 
c4080b0
fd386ba
1f1d42e
ad62014
fd386ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8204451
 
 
 
 
 
fd386ba
 
 
8204451
fd386ba
8204451
 
fd386ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f37281c
ff72119
 
fd386ba
 
 
70692d7
 
 
ff72119
70692d7
ff72119
 
70692d7
 
fd386ba
54f8009
fd386ba
 
 
4265073
 
 
 
70692d7
 
 
 
 
fd386ba
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import gradio as gr
from huggingface_hub import InferenceClient


"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("microsoft/phi-2")

#client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")



def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in messages:
        print(message)

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content

        response += token
        yield response


"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)

from typing import Annotated, Sequence, TypedDict
import operator
import functools

from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.messages import BaseMessage, HumanMessage, SystemMessage
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_experimental.tools import PythonREPLTool
from langchain.agents import create_openai_tools_agent
from langchain_huggingface import HuggingFacePipeline
from langgraph.graph import StateGraph, END

from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline

# SETUP: HuggingFace Model and Pipeline
#name = "meta-llama/Llama-3.2-1B"
#name="deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
#name="deepseek-ai/deepseek-llm-7b-chat"
#name="openai-community/gpt2"
#name="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
#name="microsoft/Phi-3.5-mini-instruct"
name="Qwen/Qwen2.5-7B-Instruct-1M"

tokenizer = AutoTokenizer.from_pretrained(name,truncation=True)
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(name)

pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    device_map="auto",
    max_new_tokens=500,  # text to generate for outputs
)
print ("pipeline is created")

# Wrap in LangChain's HuggingFacePipeline
llm = HuggingFacePipeline(pipeline=pipe)

# Members and Final Options
members = ["Researcher", "Coder"]
options = ["FINISH"] + members

# Supervisor prompt
system_prompt = (
    "You are a supervisor tasked with managing a conversation between the following workers: {members}."
    " Given the following user request, respond with the workers to act next. Each worker will perform a task"
    " and respond with their results and status. When all workers are finished, respond with FINISH."
)

# Prompt template required for the workflow
prompt = ChatPromptTemplate.from_messages(
    [
        ("system", system_prompt),
        MessagesPlaceholder(variable_name="messages"),
        ("system", "Given the conversation above, who should act next? Or Should we FINISH? Select one of: {options}"),
    ]
).partial(options=str(options), members=", ".join(members))

print ("Prompt Template created")

# Supervisor routing logic
def route_tool_response(llm_response: str) -> str:
    """
    Parse the LLM response to determine the next step based on routing logic.
    Handles unexpected or poorly structured responses gracefully.
    """
    # Normalize the LLM response
    #llm_response = llm_response.strip().lower()  # Strip whitespace and make lowercase

    # Remove any prefixes like "Assistant:" or "System:"
#    if ":" in llm_response:
#        llm_response = llm_response.split(":")[-1].strip()
   
    # Check for "finish" or worker names in the response
   
    for member in members:
        #if member.lower() in llm_response:
        if member in llm_response:
            return member
        if "finish" in llm_response:
            return "FINISH"
         
    # If no valid response is found, return a fallback error
    return "Invalid"


def supervisor_chain(state):
    """
    Supervisor logic to interact with HuggingFacePipeline and decide the next worker.
    """
    messages = state.get("messages", [])

    try:
        # Construct prompt for the supervisor
        user_prompt = prompt.format(messages=messages)

        # Generate the LLM's response
        llm_response = pipe(user_prompt, max_new_tokens=100)[0]["generated_text"]
        print(f"[DEBUG] LLM Response: {llm_response.strip()}")  # Log LLM raw output

        # Route the response to determine the next action
        next_action = route_tool_response(llm_response)

        # Validate the next action
        if next_action not in options:
            raise ValueError(f"Invalid next action: '{next_action}'. Expected one of {options}.")

 #       # Initialize intermediate_steps if not already present
 #       if "intermediate_steps" not in state:
 #           state["intermediate_steps"] = []

 #       # Append the supervisor decision to intermediate_steps
 #       state["intermediate_steps"].append(
 #           {"supervisor": "decision", "next_action": next_action}
 #       )

        print(f"[DEBUG] Next action decided: {next_action}")  # Log decision
        return {"next": next_action, "messages": messages}
 #       return {"next": next_action, "messages": messages, "intermediate_steps": state["intermediate_steps"]}
         
    except Exception as e:
        print(f"[ERROR] Supervisor chain failed: {e}")
        raise RuntimeError(f"Supervisor logic error: {str(e)}")

   



# AgentState definition
class AgentState(TypedDict):
    messages: Annotated[Sequence[BaseMessage], operator.add]
    next: str

# Create tools
tavily_tool = TavilySearchResults(max_results=5)
python_repl_tool = PythonREPLTool()

# Create agents with their respective prompts
research_agent = create_openai_tools_agent(
    llm=llm,
    tools=[tavily_tool],
    prompt=ChatPromptTemplate.from_messages(
        [
            SystemMessage(content="You are a web researcher."),
            MessagesPlaceholder(variable_name="messages"),
            MessagesPlaceholder(variable_name="agent_scratchpad"),  # Add required placeholder
        ]
    ),
)

print ("Created agents with their respective prompts")

code_agent = create_openai_tools_agent(
    llm=llm,
    tools=[python_repl_tool],
    prompt=ChatPromptTemplate.from_messages(
        [
            SystemMessage(content="You may generate safe Python code for analysis."),
            MessagesPlaceholder(variable_name="messages"),
            MessagesPlaceholder(variable_name="agent_scratchpad"),  # Add required placeholder
        ]
    ),
)


print ("create_openai_tools_agent")


# Create the workflow
workflow = StateGraph(AgentState)

# Nodes
workflow.add_node("Researcher", research_agent)  # Pass the agent directly (no .run required)
workflow.add_node("Coder", code_agent)          # Pass the agent directly
workflow.add_node("supervisor", supervisor_chain)

# Add edges for workflow transitions
for member in members:
    workflow.add_edge(member, "supervisor")

#workflow.add_conditional_edges(
#    "supervisor",
#    lambda x: x["next"],
#    {k: k for k in members} | {"FINISH": END}  # Dynamically map workers to their actions
#)

workflow.add_conditional_edges(
    "supervisor",
    lambda x: x["next"],
    {"Researcher":"Researcher","Coder":"Coder","FINISH": END}  
)


print("[DEBUG] Workflow edges added: supervisor -> members/FINISH based on 'next'")

# Define entry point
workflow.set_entry_point("supervisor")

print(workflow)

# Compile the workflow
graph = workflow.compile()

from IPython.display import display, Image
display(Image(graph.get_graph().draw_mermaid_png()))

# Properly formatted initial state
initial_state = {
    "messages": [
        #HumanMessage(content="Code hello world and print it to the terminal.")  # Correct format for user input
        HumanMessage(content="Write Code for printing \"hello world\" in Python. Keep it precise.")  # Correct format for user input
    ]
#    ,
#    "intermediate_steps": []  # Add this to track progress if needed
}


# Properly formatted second test state
second_test = {
    "messages": [
        HumanMessage(content="How is the weather in Sanfrancisco and Bangalore? Give research results")  # Correct format for user input
    ]
#    ,
#    "intermediate_steps": []  # Add this to track progress if needed
}


if __name__ == "__main__":
    #demo.launch()
   # Execute the workflow
    try:
        #print(f"[TRACE] Initial workflow state: {initial_state}")
        #result = graph.invoke(initial_state)
        #print("[INFO] Workflow Execution Complete.")
        #print(f"[TRACE] Workflow Result: {result}")  # Final workflow result

        print(f"[TRACE] Initial workflow state: {second_test}")
        result2 = graph.invoke(second_test)
        print("[INFO] Workflow Execution Complete.")
        print(f"[TRACE] Workflow Result: {result2}")  # Final workflow result
    except Exception as e:
        print(f"[ERROR] Workflow execution failed: {e}")