Spaces:
Running
Running
Anuttama Chakraborty
commited on
Commit
·
80a3a2e
1
Parent(s):
4376d5f
gradio integration first commit
Browse files
RagWithConfidenceScore.py
ADDED
@@ -0,0 +1,397 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import pandas as pd
|
4 |
+
from transformers import AutoTokenizer, AutoModel, pipeline
|
5 |
+
from sentence_transformers import SentenceTransformer, CrossEncoder
|
6 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
7 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
+
from langchain_community.document_loaders import PyPDFLoader, CSVLoader
|
9 |
+
from langchain_community.vectorstores import FAISS
|
10 |
+
from langchain.prompts import PromptTemplate
|
11 |
+
from pathlib import Path
|
12 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
13 |
+
from langchain_community.document_loaders import DirectoryLoader
|
14 |
+
|
15 |
+
class RagWithScore:
|
16 |
+
def __init__(self, model_name="sentence-transformers/all-MiniLM-L6-v2",
|
17 |
+
cross_encoder_name="cross-encoder/ms-marco-MiniLM-L-6-v2",
|
18 |
+
llm_name="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
19 |
+
documents_dir="financial_docs"):
|
20 |
+
"""
|
21 |
+
Initialize the Financial RAG system
|
22 |
+
|
23 |
+
Args:
|
24 |
+
model_name: The embedding model name
|
25 |
+
cross_encoder_name: The cross-encoder model for reranking
|
26 |
+
llm_name: Small language model for generation
|
27 |
+
documents_dir: Directory containing financial statements
|
28 |
+
"""
|
29 |
+
# Initialize embedding model
|
30 |
+
self.embedding_model = HuggingFaceEmbeddings(model_name=model_name)
|
31 |
+
|
32 |
+
# Initialize cross-encoder for reranking
|
33 |
+
self.cross_encoder = CrossEncoder(cross_encoder_name)
|
34 |
+
|
35 |
+
# Initialize small language model
|
36 |
+
self.tokenizer = AutoTokenizer.from_pretrained(llm_name)
|
37 |
+
self.llm = pipeline(
|
38 |
+
"text-generation",
|
39 |
+
model=llm_name,
|
40 |
+
tokenizer=self.tokenizer,
|
41 |
+
torch_dtype=torch.bfloat16,
|
42 |
+
device_map="auto",
|
43 |
+
max_new_tokens=512,
|
44 |
+
do_sample=False, # Set to False for deterministic outputs
|
45 |
+
temperature=0.2, # Reduce randomness
|
46 |
+
top_p=1.0 # No nucleus sampling
|
47 |
+
)
|
48 |
+
|
49 |
+
# Store paths
|
50 |
+
self.documents_dir = documents_dir
|
51 |
+
self.vector_store = None
|
52 |
+
|
53 |
+
# Input guardrail rules - sensitive terms/patterns
|
54 |
+
self.guardrail_patterns = [
|
55 |
+
"insider trading",
|
56 |
+
"stock manipulation",
|
57 |
+
"fraud detection",
|
58 |
+
"embezzlement",
|
59 |
+
"money laundering",
|
60 |
+
"tax evasion",
|
61 |
+
"illegal activities"
|
62 |
+
]
|
63 |
+
|
64 |
+
# Confidence score thresholds
|
65 |
+
self.confidence_thresholds = {
|
66 |
+
"high": 0.75,
|
67 |
+
"medium": 0.5,
|
68 |
+
"low": 0.3
|
69 |
+
}
|
70 |
+
|
71 |
+
import os
|
72 |
+
|
73 |
+
def load_and_process_documents(self):
|
74 |
+
"""Load, split and process financial documents"""
|
75 |
+
|
76 |
+
print("Processing documents to create FAISS index...")
|
77 |
+
loader = DirectoryLoader('./financial_docs', glob="**/*.pdf")
|
78 |
+
documents = loader.load()
|
79 |
+
|
80 |
+
# Split documents into chunks
|
81 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
82 |
+
chunk_size=1000, chunk_overlap=200
|
83 |
+
)
|
84 |
+
chunks = text_splitter.split_documents(documents)
|
85 |
+
print(len(chunks))
|
86 |
+
|
87 |
+
# Create and save FAISS vector store
|
88 |
+
self.vector_store = FAISS.from_documents(chunks, embedding=self.embedding_model)
|
89 |
+
self.vector_store.save_local("faiss_index")
|
90 |
+
|
91 |
+
return self.vector_store
|
92 |
+
|
93 |
+
def load_or_create_vector_store(self):
|
94 |
+
try:
|
95 |
+
print("Loading existing FAISS index...")
|
96 |
+
self.vector_store = FAISS.load_local("faiss_index", self.embedding_model)
|
97 |
+
print("FAISS index loaded successfully")
|
98 |
+
except Exception as e:
|
99 |
+
print(f"Error loading FAISS index: {e}")
|
100 |
+
print("Creating new FAISS index...")
|
101 |
+
# Code to create a new vector store
|
102 |
+
documents = self.load_and_process_documents() # Make sure this method exists
|
103 |
+
print("New FAISS index created and saved")
|
104 |
+
|
105 |
+
|
106 |
+
def generate_answer(self, query, context):
|
107 |
+
"""Generate answer based on retrieved context"""
|
108 |
+
prompt_template = """
|
109 |
+
You are a financial analyst assistant that helps answer questions about company financial statements.
|
110 |
+
Use the provided financial information to give accurate and helpful answers.
|
111 |
+
|
112 |
+
Context information from financial statements:
|
113 |
+
{context}
|
114 |
+
|
115 |
+
Question: {query}
|
116 |
+
|
117 |
+
If the question requires a numerical calculation, show the step-by-step logic behind the calculation before providing the final answer.
|
118 |
+
Ensure that your approach remains consistent in methodology across different queries.
|
119 |
+
|
120 |
+
Provide a concise answer based only on the given context. You dont have to provide sources. If you don't have enough information to answer,
|
121 |
+
say so clearly.
|
122 |
+
|
123 |
+
Answer:
|
124 |
+
"""
|
125 |
+
|
126 |
+
# Format context into a single string
|
127 |
+
context_str = "\n\n".join([doc.page_content for doc in context])
|
128 |
+
|
129 |
+
# Format prompt
|
130 |
+
prompt = prompt_template.format(context=context_str, query=query)
|
131 |
+
|
132 |
+
# Generate answer using small language model
|
133 |
+
response = self.llm(prompt)[0]['generated_text']
|
134 |
+
|
135 |
+
# Extract only the generated answer part (after the prompt)
|
136 |
+
answer = response[len(prompt):].strip()
|
137 |
+
|
138 |
+
return answer
|
139 |
+
|
140 |
+
def calculate_confidence_score(self, query, retrieved_docs, answer):
|
141 |
+
"""A simpler confidence score calculation focused on consistency and LLM confidence"""
|
142 |
+
|
143 |
+
# Get LLM confidence
|
144 |
+
llm_confidence = self._get_llm_confidence(query, retrieved_docs, answer)
|
145 |
+
|
146 |
+
# Get consistency score
|
147 |
+
consistency_score = self._measure_answer_consistency(query, retrieved_docs, answer)
|
148 |
+
|
149 |
+
# Simple weighted average
|
150 |
+
confidence_score = (0.6 * consistency_score) + (0.4 * llm_confidence)
|
151 |
+
|
152 |
+
return confidence_score
|
153 |
+
|
154 |
+
# def calculate_confidence_score(self, query, retrieved_docs, answer):
|
155 |
+
# """
|
156 |
+
# Calculate confidence score based on multiple factors:
|
157 |
+
# 1. Retrieval similarity scores
|
158 |
+
# 2. Reranking scores
|
159 |
+
# 3. Answer consistency across documents
|
160 |
+
# 4. LLM-based confidence estimation
|
161 |
+
|
162 |
+
# Returns:
|
163 |
+
# float: Confidence score between 0 and 1
|
164 |
+
# """
|
165 |
+
# # 1. Calculate average similarity/relevance score from retrieved documents
|
166 |
+
# retrieval_scores = []
|
167 |
+
# for doc in retrieved_docs:
|
168 |
+
# if hasattr(doc, 'metadata') and 'score' in doc.metadata:
|
169 |
+
# retrieval_scores.append(doc.metadata['score'])
|
170 |
+
|
171 |
+
# avg_retrieval_score = sum(retrieval_scores) / len(retrieval_scores) if retrieval_scores else 0.0
|
172 |
+
|
173 |
+
# print(f"avg_retrieval_score : {avg_retrieval_score}")
|
174 |
+
|
175 |
+
# # 2. Use cross-encoder scores as a stronger relevance signal
|
176 |
+
# pairs = [(query, doc.page_content) for doc in retrieved_docs]
|
177 |
+
# cross_encoder_scores = self.cross_encoder.predict(pairs) if pairs else []
|
178 |
+
# avg_cross_encoder_score = sum(cross_encoder_scores) / len(cross_encoder_scores) if len(cross_encoder_scores) > 0 else 0.0
|
179 |
+
|
180 |
+
# print(f"avg_cross_encoder_score : {avg_cross_encoder_score}")
|
181 |
+
# # 3. Measure answer consistency across documents
|
182 |
+
# consistency_score = self._measure_answer_consistency(query, retrieved_docs, answer)
|
183 |
+
|
184 |
+
# print(f"consistency_score : {consistency_score}")
|
185 |
+
|
186 |
+
# # 4. LLM-based confidence estimation
|
187 |
+
# llm_confidence = self._get_llm_confidence(query, retrieved_docs, answer)
|
188 |
+
|
189 |
+
# print(f"llm_confidence : {llm_confidence}")
|
190 |
+
|
191 |
+
|
192 |
+
# # Combine all factors (adjust weights based on what's most important for your use case)
|
193 |
+
# weights = {
|
194 |
+
# 'retrieval': 0.2,
|
195 |
+
# 'cross_encoder': 0.3,
|
196 |
+
# 'consistency': 0.3,
|
197 |
+
# 'llm_confidence': 0.2
|
198 |
+
# }
|
199 |
+
|
200 |
+
# confidence_score = (
|
201 |
+
# weights['retrieval'] * avg_retrieval_score +
|
202 |
+
# # weights['cross_encoder'] * avg_cross_encoder_score +
|
203 |
+
# weights['consistency'] * consistency_score +
|
204 |
+
# weights['llm_confidence'] * llm_confidence
|
205 |
+
# )
|
206 |
+
|
207 |
+
# # Normalize to 0-1 range if needed
|
208 |
+
# total_weight = weights['retrieval'] + weights['consistency'] + weights['llm_confidence']
|
209 |
+
# confidence_score = confidence_score / total_weight
|
210 |
+
# # confidence_score = min(max(confidence_score, 0.0), 1.0)
|
211 |
+
|
212 |
+
# return confidence_score
|
213 |
+
|
214 |
+
def _measure_answer_consistency(self, query, retrieved_docs, final_answer):
|
215 |
+
"""
|
216 |
+
Measure consistency of the answer across multiple documents
|
217 |
+
|
218 |
+
Returns:
|
219 |
+
float: Consistency score between 0 and 1
|
220 |
+
"""
|
221 |
+
if len(retrieved_docs) <= 1:
|
222 |
+
return 0.5 # Neutral score if we only have one document
|
223 |
+
|
224 |
+
# Generate individual answers from each document
|
225 |
+
individual_answers = []
|
226 |
+
for doc in retrieved_docs:
|
227 |
+
prompt = f"""
|
228 |
+
Based only on this specific financial information:
|
229 |
+
{doc.page_content}
|
230 |
+
|
231 |
+
Question: {query}
|
232 |
+
|
233 |
+
Provide a very brief answer (1-2 sentences maximum):
|
234 |
+
"""
|
235 |
+
response = self.llm(prompt, max_new_tokens=100)[0]['generated_text']
|
236 |
+
answer = response[len(prompt):].strip()
|
237 |
+
# print(f"llm response validation : {answer}")
|
238 |
+
individual_answers.append(answer)
|
239 |
+
|
240 |
+
# Calculate semantic similarity between individual answers
|
241 |
+
# Using embedding model to calculate similarity
|
242 |
+
answer_embeddings = self.embedding_model.embed_documents(individual_answers + [final_answer])
|
243 |
+
|
244 |
+
# Calculate similarity of each individual answer to the final answer
|
245 |
+
final_answer_embedding = answer_embeddings[-1] # Last embedding is for the final answer
|
246 |
+
individual_embeddings = answer_embeddings[:-1] # All other embeddings
|
247 |
+
|
248 |
+
similarities = []
|
249 |
+
for emb in individual_embeddings:
|
250 |
+
# Calculate cosine similarity
|
251 |
+
dot_product = sum(a * b for a, b in zip(emb, final_answer_embedding))
|
252 |
+
magnitude_a = sum(a * a for a in emb) ** 0.5
|
253 |
+
magnitude_b = sum(b * b for b in final_answer_embedding) ** 0.5
|
254 |
+
similarity = dot_product / (magnitude_a * magnitude_b) if magnitude_a * magnitude_b > 0 else 0
|
255 |
+
similarities.append(similarity)
|
256 |
+
|
257 |
+
# Average similarity represents consistency
|
258 |
+
avg_similarity = sum(similarities) / len(similarities) if similarities else 0.5
|
259 |
+
|
260 |
+
return avg_similarity
|
261 |
+
|
262 |
+
def _get_llm_confidence(self, query, retrieved_docs, answer):
|
263 |
+
"""
|
264 |
+
Ask the LLM to estimate its own confidence in the answer
|
265 |
+
|
266 |
+
Returns:
|
267 |
+
float: LLM confidence score between 0 and 1
|
268 |
+
"""
|
269 |
+
# Concatenate retrieved contexts
|
270 |
+
context = "\n\n".join([doc.page_content for doc in retrieved_docs[:2]]) # Limit to top 2 to avoid token limit
|
271 |
+
|
272 |
+
# Create confidence estimation prompt
|
273 |
+
prompt = f"""
|
274 |
+
You are evaluating the confidence level of an answer to a financial question.
|
275 |
+
|
276 |
+
Question: {query}
|
277 |
+
|
278 |
+
Retrieved Context:
|
279 |
+
{context}
|
280 |
+
|
281 |
+
Generated Answer: {answer}
|
282 |
+
|
283 |
+
On a scale of 1 to 10, how confident are you that the answer is correct and supported by the retrieved context?
|
284 |
+
Provide only a number between 1 and 10, with 10 being extremely confident and 1 being not confident at all.
|
285 |
+
"""
|
286 |
+
|
287 |
+
# Get confidence score from LLM
|
288 |
+
response = self.llm(prompt, max_new_tokens=10)[0]['generated_text']
|
289 |
+
|
290 |
+
# Extract numeric confidence score
|
291 |
+
try:
|
292 |
+
# Try to find a number in the response
|
293 |
+
import re
|
294 |
+
numbers = re.findall(r'\b([1-9]|10)\b', response)
|
295 |
+
if numbers:
|
296 |
+
llm_confidence = float(numbers[0]) / 10.0 # Normalize to 0-1
|
297 |
+
else:
|
298 |
+
llm_confidence = 0.5 # Default neutral value
|
299 |
+
except:
|
300 |
+
llm_confidence = 0.5 # Default neutral value
|
301 |
+
|
302 |
+
return llm_confidence
|
303 |
+
|
304 |
+
def get_confidence_level(self, confidence_score):
|
305 |
+
"""
|
306 |
+
Convert numerical confidence score to a level (high, medium, low)
|
307 |
+
|
308 |
+
Args:
|
309 |
+
confidence_score: Float between 0 and 1
|
310 |
+
|
311 |
+
Returns:
|
312 |
+
str: Confidence level ("high", "medium", or "low")
|
313 |
+
"""
|
314 |
+
if confidence_score >= self.confidence_thresholds["high"]:
|
315 |
+
return "high"
|
316 |
+
elif confidence_score >= self.confidence_thresholds["medium"]:
|
317 |
+
return "medium"
|
318 |
+
elif confidence_score >= self.confidence_thresholds["low"]:
|
319 |
+
return "low"
|
320 |
+
else:
|
321 |
+
return "very low"
|
322 |
+
|
323 |
+
def apply_input_guardrail(self, query):
|
324 |
+
"""Check if query violates input guardrails"""
|
325 |
+
query_lower = query.lower()
|
326 |
+
|
327 |
+
for pattern in self.guardrail_patterns:
|
328 |
+
if pattern in query_lower:
|
329 |
+
return True, f"I cannot process queries about {pattern}. Please reformulate your question."
|
330 |
+
|
331 |
+
return False, ""
|
332 |
+
|
333 |
+
def retrieve_with_reranking(self, query, top_k=10, rerank_top_k=5):
|
334 |
+
"""Retrieve relevant chunks and rerank them with cross-encoder"""
|
335 |
+
# Initial retrieval using embedding similarity
|
336 |
+
docs_and_scores = self.vector_store.similarity_search_with_score(query, k=top_k)
|
337 |
+
|
338 |
+
# Sort retrieved documents by FAISS similarity score (deterministic sorting)
|
339 |
+
docs_and_scores.sort(key=lambda x: x[1], reverse=True)
|
340 |
+
|
341 |
+
# Prepare pairs for cross-encoder
|
342 |
+
pairs = [(query, doc.page_content) for doc, _ in docs_and_scores]
|
343 |
+
|
344 |
+
# Get scores from cross-encoder
|
345 |
+
scores = self.cross_encoder.predict(pairs)
|
346 |
+
|
347 |
+
# Sort by cross-encoder scores
|
348 |
+
reranked_results = sorted(zip(docs_and_scores, scores), key=lambda x: x[1], reverse=True)
|
349 |
+
|
350 |
+
# Return the top reranked results
|
351 |
+
return [doc for (doc, _), _ in reranked_results[:rerank_top_k]]
|
352 |
+
|
353 |
+
def is_financial_question(self,query):
|
354 |
+
financial_keywords = [
|
355 |
+
"finance", "financial", "revenue", "profit", "loss", "EBITDA", "cash flow",
|
356 |
+
"balance sheet", "income statement", "stock", "bond", "investment", "risk",
|
357 |
+
"interest rate", "inflation", "debt", "equity", "valuation", "dividend",
|
358 |
+
"market", "economy", "GDP", "currency", "exchange rate", "tax", "audit",
|
359 |
+
"compliance", "regulation", "SEC", "earnings", "capital", "asset", "liability"
|
360 |
+
]
|
361 |
+
query_lower = query.lower()
|
362 |
+
return any(keyword in query_lower for keyword in financial_keywords)
|
363 |
+
|
364 |
+
def answer_question(self, query):
|
365 |
+
"""End-to-end pipeline to answer a question with confidence score"""
|
366 |
+
|
367 |
+
if not self.is_financial_question(query):
|
368 |
+
return {
|
369 |
+
"answer": "This question is outside the scope of financial data. Please ask a question related to finance.",
|
370 |
+
"source_documents": [],
|
371 |
+
"blocked": True,
|
372 |
+
"confidence_score": 0,
|
373 |
+
"confidence_level": "none"
|
374 |
+
}
|
375 |
+
# Apply input guardrail
|
376 |
+
blocked, message = self.apply_input_guardrail(query)
|
377 |
+
if blocked:
|
378 |
+
return {"answer": message, "source_documents": [], "blocked": True, "confidence_score": 0, "confidence_level": "none"}
|
379 |
+
|
380 |
+
# Retrieve and rerank relevant contexts
|
381 |
+
reranked_docs = self.retrieve_with_reranking(query)
|
382 |
+
|
383 |
+
# Generate answer
|
384 |
+
answer = self.generate_answer(query, reranked_docs)
|
385 |
+
|
386 |
+
# Calculate confidence score
|
387 |
+
confidence_score = self.calculate_confidence_score(query, reranked_docs, answer)
|
388 |
+
|
389 |
+
confidence_level = self.get_confidence_level(confidence_score)
|
390 |
+
|
391 |
+
return {
|
392 |
+
"answer": answer,
|
393 |
+
"source_documents": reranked_docs,
|
394 |
+
"blocked": False,
|
395 |
+
"confidence_score": confidence_score,
|
396 |
+
"confidence_level": confidence_level
|
397 |
+
}
|
app.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from RagWithConfidenceScore import RagWithScore #
|
3 |
+
|
4 |
+
# Initialize the RAG system
|
5 |
+
rag_system = RagWithScore()
|
6 |
+
|
7 |
+
# Load or create the vector store
|
8 |
+
rag_system.load_and_process_documents()
|
9 |
+
|
10 |
+
# Define the function to handle user queries
|
11 |
+
def answer_financial_query(query):
|
12 |
+
# Use the RAG system to answer the question
|
13 |
+
result = rag_system.answer_question(query)
|
14 |
+
|
15 |
+
# Format the output
|
16 |
+
answer = result["answer"]
|
17 |
+
confidence_score = result["confidence_score"]
|
18 |
+
confidence_level = result["confidence_level"]
|
19 |
+
sources = "\n\n".join([doc.page_content for doc in result["source_documents"]])
|
20 |
+
|
21 |
+
return answer, f"{confidence_score:.2f}", confidence_level, sources
|
22 |
+
|
23 |
+
# Return the results
|
24 |
+
# return {
|
25 |
+
# "Answer": answer,
|
26 |
+
# "Confidence Score": f"{confidence_score:.2f}",
|
27 |
+
# "Confidence Level": confidence_level,
|
28 |
+
# "Source Documents": sources
|
29 |
+
# }
|
30 |
+
|
31 |
+
# Create a Gradio interface
|
32 |
+
interface = gr.Interface(
|
33 |
+
fn=answer_financial_query, # Function to call
|
34 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter your financial query here..."), # Input component
|
35 |
+
outputs=[ # Output components
|
36 |
+
gr.Textbox(label="Answer"),
|
37 |
+
gr.Textbox(label="Confidence Score"),
|
38 |
+
gr.Textbox(label="Confidence Level")
|
39 |
+
# gr.Textbox(label="Source Documents", lines=10)
|
40 |
+
],
|
41 |
+
title="Financial RAG System",
|
42 |
+
description="Ask questions about financial data and get answers powered by Retrieval-Augmented Generation (RAG).",
|
43 |
+
examples=[
|
44 |
+
["What is the current revenue growth rate?"],
|
45 |
+
["Explain the concept of EBITDA."],
|
46 |
+
["What are the key financial risks mentioned in the report?"]
|
47 |
+
]
|
48 |
+
)
|
49 |
+
|
50 |
+
# Launch the interface
|
51 |
+
interface.launch()
|
financial_docs/JPMorgan Chase Bank, N.A. 2024 Annual Consolidated Financial Statements - Final.pdf
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
pandas
|
3 |
+
transformers
|
4 |
+
sentence-transformers
|
5 |
+
scikit-learn
|
6 |
+
langchain
|
7 |
+
langchain-community
|
8 |
+
faiss-cpu
|
9 |
+
accelerate>=0.26.0
|
10 |
+
unstructured
|
11 |
+
unstructured[pdf]
|
12 |
+
langchain_huggingface
|
13 |
+
gradio
|