financialrag / RagWithConfidenceScore.py
Anuttama Chakraborty
.
4d8af9a
import os
import torch
import pandas as pd
from transformers import AutoTokenizer, AutoModel, pipeline
from sentence_transformers import SentenceTransformer, CrossEncoder
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import PyPDFLoader, CSVLoader
from langchain_community.vectorstores import FAISS
from langchain.prompts import PromptTemplate
from pathlib import Path
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.document_loaders import DirectoryLoader
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor
class RagWithScore:
def __init__(self, model_name="sentence-transformers/all-MiniLM-L6-v2",
cross_encoder_name="cross-encoder/ms-marco-TinyBERT-L-2-v2",
llm_name="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
documents_dir="financial_docs"):
"""
Initialize the Financial RAG system
Args:
model_name: The embedding model name
cross_encoder_name: The cross-encoder model for reranking
llm_name: Small language model for generation
documents_dir: Directory containing financial statements
"""
# Initialize embedding model
self.embedding_model = HuggingFaceEmbeddings(model_name=model_name)
# Initialize cross-encoder for reranking
self.cross_encoder = CrossEncoder(cross_encoder_name)
# Initialize small language model
self.tokenizer = AutoTokenizer.from_pretrained(llm_name)
self.llm = pipeline(
"text-generation",
model=llm_name,
tokenizer=self.tokenizer,
torch_dtype=torch.bfloat16,
device_map="auto",
max_new_tokens=512,
do_sample=False, # Set to False for deterministic outputs
temperature=0.2, # Reduce randomness
top_p=1.0 # No nucleus sampling
)
# Store paths
self.documents_dir = documents_dir
self.vector_store = None
# Input guardrail rules - sensitive terms/patterns
self.guardrail_patterns = [
"insider trading",
"stock manipulation",
"fraud detection",
"embezzlement",
"money laundering",
"tax evasion",
"illegal activities"
]
# Confidence score thresholds
self.confidence_thresholds = {
"high": 0.75,
"medium": 0.5,
"low": 0.3
}
import os
## Loadung document and creating vector index at the start of the application
def load_and_process_documents(self):
"""Load, split and process financial documents"""
print("Processing documents to create FAISS index...")
loader = DirectoryLoader('./financial_docs', glob="**/*.pdf")
documents = loader.load()
# Split documents into chunks
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000, chunk_overlap=200
)
chunks = text_splitter.split_documents(documents)
print(len(chunks))
# Create and save FAISS vector store
self.vector_store = FAISS.from_documents(chunks, embedding=self.embedding_model)
self.vector_store.save_local("faiss_index")
return self.vector_store
## generating response with the query and context by the help of the prompt and calling the slm with the prompt
def generate_answer(self, query, context):
"""Generate answer and calculate confidence score concurrently."""
# Format context into a single string
context_str = "\n\n".join([doc.page_content for doc in context])
# Define the prompt
prompt = f"""
You are a financial analyst assistant that helps answer questions about company financial statements.
Use the provided financial information to give accurate and helpful answers.
Context:
{context_str}
Question: {query}
Instructions:
1. Be concise and avoid repetition.
2. If the question is too broad or unclear, ask for clarification or provide a general overview.
3. Only if the question requires numerical calculations, show the step-by-step logic behind the calculation before providing the final answer.
4. If the context is insufficient, say "Not enough information to answer this question."
5. Do not provide sources unless explicitly asked.
Answer:
"""
# Generate answer using the language model
response = self.llm(prompt)[0]['generated_text']
answer = response[len(prompt):].strip()
# # Calculate confidence score concurrently
# with ThreadPoolExecutor() as executor:
# future_confidence = executor.submit(self.calculate_confidence_score, query, context, answer)
# confidence_score = future_confidence.result()
return answer
## for confidence score cosine similarity is calculated between the query embedding and answer embedding
def calculate_confidence_score(self, query, retrieved_docs, answer):
"""
Calculate confidence score using embedding similarity (parallelized).
"""
# Get embeddings for query and answer
query_embedding = self.embedding_model.embed_query(query)
answer_embedding = self.embedding_model.embed_query(answer)
# Calculate cosine similarity
dot_product = sum(a * b for a, b in zip(query_embedding, answer_embedding))
magnitude_a = sum(a * a for a in query_embedding) ** 0.5
magnitude_b = sum(b * b for b in answer_embedding) ** 0.5
similarity = dot_product / (magnitude_a * magnitude_b) if magnitude_a * magnitude_b > 0 else 0
return similarity
## confidence level is determined from the confidence score
def get_confidence_level(self, confidence_score):
"""
Convert numerical confidence score to a level (high, medium, low)
Args:
confidence_score: Float between 0 and 1
Returns:
str: Confidence level ("high", "medium", or "low")
"""
if confidence_score >= self.confidence_thresholds["high"]:
return "high"
elif confidence_score >= self.confidence_thresholds["medium"]:
return "medium"
elif confidence_score >= self.confidence_thresholds["low"]:
return "low"
else:
return "very low"
## guardrail is applied to filter harmful user queries
def apply_input_guardrail(self, query):
"""Check if query violates input guardrails"""
query_lower = query.lower()
for pattern in self.guardrail_patterns:
if pattern in query_lower:
return True, f"I cannot process queries about {pattern}. Please reformulate your question."
return False, ""
## first the to 5 chunks are retrieved. then after reranking with cross encoder top 2 are rerieved
def retrieve_with_reranking(self, query, top_k=5, rerank_top_k=3):
print("retrieve_with_reranking start")
print(datetime.now().strftime('%Y-%m-%d %H:%M:%S'))
"""Retrieve relevant chunks and rerank them with cross-encoder"""
# Initial retrieval using embedding similarity
docs_and_scores = self.vector_store.similarity_search_with_score(query, k=top_k)
# Sort retrieved documents by FAISS similarity score (deterministic sorting)
docs_and_scores.sort(key=lambda x: x[1], reverse=True)
# Prepare pairs for cross-encoder
pairs = [(query, doc.page_content) for doc, _ in docs_and_scores]
print(pairs)
print(len(pairs))
# Get scores from cross-encoder
scores = self.cross_encoder.predict(pairs)
print(scores)
# Sort by cross-encoder scores
reranked_results = sorted(zip(docs_and_scores, scores), key=lambda x: x[1], reverse=True)
print(reranked_results)
print(len(reranked_results))
# Return the top reranked results
print("retrieve_with_reranking end")
print(datetime.now().strftime('%Y-%m-%d %H:%M:%S'))
return [doc for (doc, _), _ in reranked_results[:rerank_top_k]]
## to handle irrerelevant questions, a rule based claasifier is bein used to classify the questions
def is_financial_question(self,query):
financial_keywords = [
"finance", "financial", "revenue", "profit", "loss", "ebitda", "cash flow",
"balance sheet", "income statement", "stock", "bond", "investment", "risk",
"interest rate", "inflation", "debt", "equity", "valuation", "dividend",
"market", "economy", "GDP", "currency", "exchange rate", "tax", "audit",
"compliance", "regulation", "SEC", "earnings", "capital", "asset", "liability"
]
query_lower = query.lower()
return any(keyword in query_lower for keyword in financial_keywords)
##the pipeline of answer and confidence score generation from the query
def answer_question(self, query):
"""End-to-end pipeline to answer a question with confidence score"""
# Apply input guardrail
blocked, message = self.apply_input_guardrail(query)
if blocked:
return {"answer": message, "source_documents": [], "blocked": True, "confidence_score": 0, "confidence_level": "none"}
if not self.is_financial_question(query):
return {
"answer": "This question is outside the scope of financial data. Please ask a question related to finance.",
"source_documents": [],
"blocked": True,
"confidence_score": 0,
"confidence_level": "none"
}
# Retrieve and rerank relevant contexts
reranked_docs = self.retrieve_with_reranking(query)
# Generate answer and confidence score
answer = self.generate_answer(query, reranked_docs)
print(f"answer : {answer}")
# Calculate confidence score
confidence_score = self.calculate_confidence_score(query, reranked_docs, answer)
print(f"confidence score : {confidence_score}")
confidence_level = self.get_confidence_level(confidence_score)
return {
"answer": answer,
"source_documents": reranked_docs,
"blocked": False,
"confidence_score": confidence_score,
"confidence_level": confidence_level
}