Spaces:
Running
Running
Create rmvpe.py
Browse files- modules/rmvpe.py +600 -0
modules/rmvpe.py
ADDED
|
@@ -0,0 +1,600 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from io import BytesIO
|
| 2 |
+
import os
|
| 3 |
+
from typing import List, Optional, Tuple
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
from librosa.util import normalize, pad_center, tiny
|
| 10 |
+
from scipy.signal import get_window
|
| 11 |
+
|
| 12 |
+
import logging
|
| 13 |
+
|
| 14 |
+
logger = logging.getLogger(__name__)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class STFT(torch.nn.Module):
|
| 18 |
+
def __init__(
|
| 19 |
+
self, filter_length=1024, hop_length=512, win_length=None, window="hann"
|
| 20 |
+
):
|
| 21 |
+
"""
|
| 22 |
+
This module implements an STFT using 1D convolution and 1D transpose convolutions.
|
| 23 |
+
This is a bit tricky so there are some cases that probably won't work as working
|
| 24 |
+
out the same sizes before and after in all overlap add setups is tough. Right now,
|
| 25 |
+
this code should work with hop lengths that are half the filter length (50% overlap
|
| 26 |
+
between frames).
|
| 27 |
+
|
| 28 |
+
Keyword Arguments:
|
| 29 |
+
filter_length {int} -- Length of filters used (default: {1024})
|
| 30 |
+
hop_length {int} -- Hop length of STFT (restrict to 50% overlap between frames) (default: {512})
|
| 31 |
+
win_length {[type]} -- Length of the window function applied to each frame (if not specified, it
|
| 32 |
+
equals the filter length). (default: {None})
|
| 33 |
+
window {str} -- Type of window to use (options are bartlett, hann, hamming, blackman, blackmanharris)
|
| 34 |
+
(default: {'hann'})
|
| 35 |
+
"""
|
| 36 |
+
super(STFT, self).__init__()
|
| 37 |
+
self.filter_length = filter_length
|
| 38 |
+
self.hop_length = hop_length
|
| 39 |
+
self.win_length = win_length if win_length else filter_length
|
| 40 |
+
self.window = window
|
| 41 |
+
self.forward_transform = None
|
| 42 |
+
self.pad_amount = int(self.filter_length / 2)
|
| 43 |
+
fourier_basis = np.fft.fft(np.eye(self.filter_length))
|
| 44 |
+
|
| 45 |
+
cutoff = int((self.filter_length / 2 + 1))
|
| 46 |
+
fourier_basis = np.vstack(
|
| 47 |
+
[np.real(fourier_basis[:cutoff, :]), np.imag(fourier_basis[:cutoff, :])]
|
| 48 |
+
)
|
| 49 |
+
forward_basis = torch.FloatTensor(fourier_basis)
|
| 50 |
+
inverse_basis = torch.FloatTensor(np.linalg.pinv(fourier_basis))
|
| 51 |
+
|
| 52 |
+
assert filter_length >= self.win_length
|
| 53 |
+
# get window and zero center pad it to filter_length
|
| 54 |
+
fft_window = get_window(window, self.win_length, fftbins=True)
|
| 55 |
+
fft_window = pad_center(fft_window, size=filter_length)
|
| 56 |
+
fft_window = torch.from_numpy(fft_window).float()
|
| 57 |
+
|
| 58 |
+
# window the bases
|
| 59 |
+
forward_basis *= fft_window
|
| 60 |
+
inverse_basis = (inverse_basis.T * fft_window).T
|
| 61 |
+
|
| 62 |
+
self.register_buffer("forward_basis", forward_basis.float())
|
| 63 |
+
self.register_buffer("inverse_basis", inverse_basis.float())
|
| 64 |
+
self.register_buffer("fft_window", fft_window.float())
|
| 65 |
+
|
| 66 |
+
def transform(self, input_data, return_phase=False):
|
| 67 |
+
"""Take input data (audio) to STFT domain.
|
| 68 |
+
|
| 69 |
+
Arguments:
|
| 70 |
+
input_data {tensor} -- Tensor of floats, with shape (num_batch, num_samples)
|
| 71 |
+
|
| 72 |
+
Returns:
|
| 73 |
+
magnitude {tensor} -- Magnitude of STFT with shape (num_batch,
|
| 74 |
+
num_frequencies, num_frames)
|
| 75 |
+
phase {tensor} -- Phase of STFT with shape (num_batch,
|
| 76 |
+
num_frequencies, num_frames)
|
| 77 |
+
"""
|
| 78 |
+
input_data = F.pad(
|
| 79 |
+
input_data,
|
| 80 |
+
(self.pad_amount, self.pad_amount),
|
| 81 |
+
mode="reflect",
|
| 82 |
+
)
|
| 83 |
+
forward_transform = input_data.unfold(
|
| 84 |
+
1, self.filter_length, self.hop_length
|
| 85 |
+
).permute(0, 2, 1)
|
| 86 |
+
forward_transform = torch.matmul(self.forward_basis, forward_transform)
|
| 87 |
+
cutoff = int((self.filter_length / 2) + 1)
|
| 88 |
+
real_part = forward_transform[:, :cutoff, :]
|
| 89 |
+
imag_part = forward_transform[:, cutoff:, :]
|
| 90 |
+
magnitude = torch.sqrt(real_part**2 + imag_part**2)
|
| 91 |
+
if return_phase:
|
| 92 |
+
phase = torch.atan2(imag_part.data, real_part.data)
|
| 93 |
+
return magnitude, phase
|
| 94 |
+
else:
|
| 95 |
+
return magnitude
|
| 96 |
+
|
| 97 |
+
def inverse(self, magnitude, phase):
|
| 98 |
+
"""Call the inverse STFT (iSTFT), given magnitude and phase tensors produced
|
| 99 |
+
by the ```transform``` function.
|
| 100 |
+
|
| 101 |
+
Arguments:
|
| 102 |
+
magnitude {tensor} -- Magnitude of STFT with shape (num_batch,
|
| 103 |
+
num_frequencies, num_frames)
|
| 104 |
+
phase {tensor} -- Phase of STFT with shape (num_batch,
|
| 105 |
+
num_frequencies, num_frames)
|
| 106 |
+
|
| 107 |
+
Returns:
|
| 108 |
+
inverse_transform {tensor} -- Reconstructed audio given magnitude and phase. Of
|
| 109 |
+
shape (num_batch, num_samples)
|
| 110 |
+
"""
|
| 111 |
+
cat = torch.cat(
|
| 112 |
+
[magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1
|
| 113 |
+
)
|
| 114 |
+
fold = torch.nn.Fold(
|
| 115 |
+
output_size=(1, (cat.size(-1) - 1) * self.hop_length + self.filter_length),
|
| 116 |
+
kernel_size=(1, self.filter_length),
|
| 117 |
+
stride=(1, self.hop_length),
|
| 118 |
+
)
|
| 119 |
+
inverse_transform = torch.matmul(self.inverse_basis, cat)
|
| 120 |
+
inverse_transform = fold(inverse_transform)[
|
| 121 |
+
:, 0, 0, self.pad_amount : -self.pad_amount
|
| 122 |
+
]
|
| 123 |
+
window_square_sum = (
|
| 124 |
+
self.fft_window.pow(2).repeat(cat.size(-1), 1).T.unsqueeze(0)
|
| 125 |
+
)
|
| 126 |
+
window_square_sum = fold(window_square_sum)[
|
| 127 |
+
:, 0, 0, self.pad_amount : -self.pad_amount
|
| 128 |
+
]
|
| 129 |
+
inverse_transform /= window_square_sum
|
| 130 |
+
return inverse_transform
|
| 131 |
+
|
| 132 |
+
def forward(self, input_data):
|
| 133 |
+
"""Take input data (audio) to STFT domain and then back to audio.
|
| 134 |
+
|
| 135 |
+
Arguments:
|
| 136 |
+
input_data {tensor} -- Tensor of floats, with shape (num_batch, num_samples)
|
| 137 |
+
|
| 138 |
+
Returns:
|
| 139 |
+
reconstruction {tensor} -- Reconstructed audio given magnitude and phase. Of
|
| 140 |
+
shape (num_batch, num_samples)
|
| 141 |
+
"""
|
| 142 |
+
self.magnitude, self.phase = self.transform(input_data, return_phase=True)
|
| 143 |
+
reconstruction = self.inverse(self.magnitude, self.phase)
|
| 144 |
+
return reconstruction
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
from time import time as ttime
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
class BiGRU(nn.Module):
|
| 151 |
+
def __init__(self, input_features, hidden_features, num_layers):
|
| 152 |
+
super(BiGRU, self).__init__()
|
| 153 |
+
self.gru = nn.GRU(
|
| 154 |
+
input_features,
|
| 155 |
+
hidden_features,
|
| 156 |
+
num_layers=num_layers,
|
| 157 |
+
batch_first=True,
|
| 158 |
+
bidirectional=True,
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
def forward(self, x):
|
| 162 |
+
return self.gru(x)[0]
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
class ConvBlockRes(nn.Module):
|
| 166 |
+
def __init__(self, in_channels, out_channels, momentum=0.01):
|
| 167 |
+
super(ConvBlockRes, self).__init__()
|
| 168 |
+
self.conv = nn.Sequential(
|
| 169 |
+
nn.Conv2d(
|
| 170 |
+
in_channels=in_channels,
|
| 171 |
+
out_channels=out_channels,
|
| 172 |
+
kernel_size=(3, 3),
|
| 173 |
+
stride=(1, 1),
|
| 174 |
+
padding=(1, 1),
|
| 175 |
+
bias=False,
|
| 176 |
+
),
|
| 177 |
+
nn.BatchNorm2d(out_channels, momentum=momentum),
|
| 178 |
+
nn.ReLU(),
|
| 179 |
+
nn.Conv2d(
|
| 180 |
+
in_channels=out_channels,
|
| 181 |
+
out_channels=out_channels,
|
| 182 |
+
kernel_size=(3, 3),
|
| 183 |
+
stride=(1, 1),
|
| 184 |
+
padding=(1, 1),
|
| 185 |
+
bias=False,
|
| 186 |
+
),
|
| 187 |
+
nn.BatchNorm2d(out_channels, momentum=momentum),
|
| 188 |
+
nn.ReLU(),
|
| 189 |
+
)
|
| 190 |
+
# self.shortcut:Optional[nn.Module] = None
|
| 191 |
+
if in_channels != out_channels:
|
| 192 |
+
self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1))
|
| 193 |
+
|
| 194 |
+
def forward(self, x: torch.Tensor):
|
| 195 |
+
if not hasattr(self, "shortcut"):
|
| 196 |
+
return self.conv(x) + x
|
| 197 |
+
else:
|
| 198 |
+
return self.conv(x) + self.shortcut(x)
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
class Encoder(nn.Module):
|
| 202 |
+
def __init__(
|
| 203 |
+
self,
|
| 204 |
+
in_channels,
|
| 205 |
+
in_size,
|
| 206 |
+
n_encoders,
|
| 207 |
+
kernel_size,
|
| 208 |
+
n_blocks,
|
| 209 |
+
out_channels=16,
|
| 210 |
+
momentum=0.01,
|
| 211 |
+
):
|
| 212 |
+
super(Encoder, self).__init__()
|
| 213 |
+
self.n_encoders = n_encoders
|
| 214 |
+
self.bn = nn.BatchNorm2d(in_channels, momentum=momentum)
|
| 215 |
+
self.layers = nn.ModuleList()
|
| 216 |
+
self.latent_channels = []
|
| 217 |
+
for i in range(self.n_encoders):
|
| 218 |
+
self.layers.append(
|
| 219 |
+
ResEncoderBlock(
|
| 220 |
+
in_channels, out_channels, kernel_size, n_blocks, momentum=momentum
|
| 221 |
+
)
|
| 222 |
+
)
|
| 223 |
+
self.latent_channels.append([out_channels, in_size])
|
| 224 |
+
in_channels = out_channels
|
| 225 |
+
out_channels *= 2
|
| 226 |
+
in_size //= 2
|
| 227 |
+
self.out_size = in_size
|
| 228 |
+
self.out_channel = out_channels
|
| 229 |
+
|
| 230 |
+
def forward(self, x: torch.Tensor):
|
| 231 |
+
concat_tensors: List[torch.Tensor] = []
|
| 232 |
+
x = self.bn(x)
|
| 233 |
+
for i, layer in enumerate(self.layers):
|
| 234 |
+
t, x = layer(x)
|
| 235 |
+
concat_tensors.append(t)
|
| 236 |
+
return x, concat_tensors
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
class ResEncoderBlock(nn.Module):
|
| 240 |
+
def __init__(
|
| 241 |
+
self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01
|
| 242 |
+
):
|
| 243 |
+
super(ResEncoderBlock, self).__init__()
|
| 244 |
+
self.n_blocks = n_blocks
|
| 245 |
+
self.conv = nn.ModuleList()
|
| 246 |
+
self.conv.append(ConvBlockRes(in_channels, out_channels, momentum))
|
| 247 |
+
for i in range(n_blocks - 1):
|
| 248 |
+
self.conv.append(ConvBlockRes(out_channels, out_channels, momentum))
|
| 249 |
+
self.kernel_size = kernel_size
|
| 250 |
+
if self.kernel_size is not None:
|
| 251 |
+
self.pool = nn.AvgPool2d(kernel_size=kernel_size)
|
| 252 |
+
|
| 253 |
+
def forward(self, x):
|
| 254 |
+
for i, conv in enumerate(self.conv):
|
| 255 |
+
x = conv(x)
|
| 256 |
+
if self.kernel_size is not None:
|
| 257 |
+
return x, self.pool(x)
|
| 258 |
+
else:
|
| 259 |
+
return x
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
class Intermediate(nn.Module): #
|
| 263 |
+
def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01):
|
| 264 |
+
super(Intermediate, self).__init__()
|
| 265 |
+
self.n_inters = n_inters
|
| 266 |
+
self.layers = nn.ModuleList()
|
| 267 |
+
self.layers.append(
|
| 268 |
+
ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum)
|
| 269 |
+
)
|
| 270 |
+
for i in range(self.n_inters - 1):
|
| 271 |
+
self.layers.append(
|
| 272 |
+
ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum)
|
| 273 |
+
)
|
| 274 |
+
|
| 275 |
+
def forward(self, x):
|
| 276 |
+
for i, layer in enumerate(self.layers):
|
| 277 |
+
x = layer(x)
|
| 278 |
+
return x
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
class ResDecoderBlock(nn.Module):
|
| 282 |
+
def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01):
|
| 283 |
+
super(ResDecoderBlock, self).__init__()
|
| 284 |
+
out_padding = (0, 1) if stride == (1, 2) else (1, 1)
|
| 285 |
+
self.n_blocks = n_blocks
|
| 286 |
+
self.conv1 = nn.Sequential(
|
| 287 |
+
nn.ConvTranspose2d(
|
| 288 |
+
in_channels=in_channels,
|
| 289 |
+
out_channels=out_channels,
|
| 290 |
+
kernel_size=(3, 3),
|
| 291 |
+
stride=stride,
|
| 292 |
+
padding=(1, 1),
|
| 293 |
+
output_padding=out_padding,
|
| 294 |
+
bias=False,
|
| 295 |
+
),
|
| 296 |
+
nn.BatchNorm2d(out_channels, momentum=momentum),
|
| 297 |
+
nn.ReLU(),
|
| 298 |
+
)
|
| 299 |
+
self.conv2 = nn.ModuleList()
|
| 300 |
+
self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum))
|
| 301 |
+
for i in range(n_blocks - 1):
|
| 302 |
+
self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum))
|
| 303 |
+
|
| 304 |
+
def forward(self, x, concat_tensor):
|
| 305 |
+
x = self.conv1(x)
|
| 306 |
+
x = torch.cat((x, concat_tensor), dim=1)
|
| 307 |
+
for i, conv2 in enumerate(self.conv2):
|
| 308 |
+
x = conv2(x)
|
| 309 |
+
return x
|
| 310 |
+
|
| 311 |
+
|
| 312 |
+
class Decoder(nn.Module):
|
| 313 |
+
def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01):
|
| 314 |
+
super(Decoder, self).__init__()
|
| 315 |
+
self.layers = nn.ModuleList()
|
| 316 |
+
self.n_decoders = n_decoders
|
| 317 |
+
for i in range(self.n_decoders):
|
| 318 |
+
out_channels = in_channels // 2
|
| 319 |
+
self.layers.append(
|
| 320 |
+
ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum)
|
| 321 |
+
)
|
| 322 |
+
in_channels = out_channels
|
| 323 |
+
|
| 324 |
+
def forward(self, x: torch.Tensor, concat_tensors: List[torch.Tensor]):
|
| 325 |
+
for i, layer in enumerate(self.layers):
|
| 326 |
+
x = layer(x, concat_tensors[-1 - i])
|
| 327 |
+
return x
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
class DeepUnet(nn.Module):
|
| 331 |
+
def __init__(
|
| 332 |
+
self,
|
| 333 |
+
kernel_size,
|
| 334 |
+
n_blocks,
|
| 335 |
+
en_de_layers=5,
|
| 336 |
+
inter_layers=4,
|
| 337 |
+
in_channels=1,
|
| 338 |
+
en_out_channels=16,
|
| 339 |
+
):
|
| 340 |
+
super(DeepUnet, self).__init__()
|
| 341 |
+
self.encoder = Encoder(
|
| 342 |
+
in_channels, 128, en_de_layers, kernel_size, n_blocks, en_out_channels
|
| 343 |
+
)
|
| 344 |
+
self.intermediate = Intermediate(
|
| 345 |
+
self.encoder.out_channel // 2,
|
| 346 |
+
self.encoder.out_channel,
|
| 347 |
+
inter_layers,
|
| 348 |
+
n_blocks,
|
| 349 |
+
)
|
| 350 |
+
self.decoder = Decoder(
|
| 351 |
+
self.encoder.out_channel, en_de_layers, kernel_size, n_blocks
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 355 |
+
x, concat_tensors = self.encoder(x)
|
| 356 |
+
x = self.intermediate(x)
|
| 357 |
+
x = self.decoder(x, concat_tensors)
|
| 358 |
+
return x
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
class E2E(nn.Module):
|
| 362 |
+
def __init__(
|
| 363 |
+
self,
|
| 364 |
+
n_blocks,
|
| 365 |
+
n_gru,
|
| 366 |
+
kernel_size,
|
| 367 |
+
en_de_layers=5,
|
| 368 |
+
inter_layers=4,
|
| 369 |
+
in_channels=1,
|
| 370 |
+
en_out_channels=16,
|
| 371 |
+
):
|
| 372 |
+
super(E2E, self).__init__()
|
| 373 |
+
self.unet = DeepUnet(
|
| 374 |
+
kernel_size,
|
| 375 |
+
n_blocks,
|
| 376 |
+
en_de_layers,
|
| 377 |
+
inter_layers,
|
| 378 |
+
in_channels,
|
| 379 |
+
en_out_channels,
|
| 380 |
+
)
|
| 381 |
+
self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1))
|
| 382 |
+
if n_gru:
|
| 383 |
+
self.fc = nn.Sequential(
|
| 384 |
+
BiGRU(3 * 128, 256, n_gru),
|
| 385 |
+
nn.Linear(512, 360),
|
| 386 |
+
nn.Dropout(0.25),
|
| 387 |
+
nn.Sigmoid(),
|
| 388 |
+
)
|
| 389 |
+
else:
|
| 390 |
+
self.fc = nn.Sequential(
|
| 391 |
+
nn.Linear(3 * nn.N_MELS, nn.N_CLASS), nn.Dropout(0.25), nn.Sigmoid()
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
def forward(self, mel):
|
| 395 |
+
# print(mel.shape)
|
| 396 |
+
mel = mel.transpose(-1, -2).unsqueeze(1)
|
| 397 |
+
x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2)
|
| 398 |
+
x = self.fc(x)
|
| 399 |
+
# print(x.shape)
|
| 400 |
+
return x
|
| 401 |
+
|
| 402 |
+
|
| 403 |
+
from librosa.filters import mel
|
| 404 |
+
|
| 405 |
+
|
| 406 |
+
class MelSpectrogram(torch.nn.Module):
|
| 407 |
+
def __init__(
|
| 408 |
+
self,
|
| 409 |
+
is_half,
|
| 410 |
+
n_mel_channels,
|
| 411 |
+
sampling_rate,
|
| 412 |
+
win_length,
|
| 413 |
+
hop_length,
|
| 414 |
+
n_fft=None,
|
| 415 |
+
mel_fmin=0,
|
| 416 |
+
mel_fmax=None,
|
| 417 |
+
clamp=1e-5,
|
| 418 |
+
):
|
| 419 |
+
super().__init__()
|
| 420 |
+
n_fft = win_length if n_fft is None else n_fft
|
| 421 |
+
self.hann_window = {}
|
| 422 |
+
mel_basis = mel(
|
| 423 |
+
sr=sampling_rate,
|
| 424 |
+
n_fft=n_fft,
|
| 425 |
+
n_mels=n_mel_channels,
|
| 426 |
+
fmin=mel_fmin,
|
| 427 |
+
fmax=mel_fmax,
|
| 428 |
+
htk=True,
|
| 429 |
+
)
|
| 430 |
+
mel_basis = torch.from_numpy(mel_basis).float()
|
| 431 |
+
self.register_buffer("mel_basis", mel_basis)
|
| 432 |
+
self.n_fft = win_length if n_fft is None else n_fft
|
| 433 |
+
self.hop_length = hop_length
|
| 434 |
+
self.win_length = win_length
|
| 435 |
+
self.sampling_rate = sampling_rate
|
| 436 |
+
self.n_mel_channels = n_mel_channels
|
| 437 |
+
self.clamp = clamp
|
| 438 |
+
self.is_half = is_half
|
| 439 |
+
|
| 440 |
+
def forward(self, audio, keyshift=0, speed=1, center=True):
|
| 441 |
+
factor = 2 ** (keyshift / 12)
|
| 442 |
+
n_fft_new = int(np.round(self.n_fft * factor))
|
| 443 |
+
win_length_new = int(np.round(self.win_length * factor))
|
| 444 |
+
hop_length_new = int(np.round(self.hop_length * speed))
|
| 445 |
+
keyshift_key = str(keyshift) + "_" + str(audio.device)
|
| 446 |
+
if keyshift_key not in self.hann_window:
|
| 447 |
+
self.hann_window[keyshift_key] = torch.hann_window(win_length_new).to(
|
| 448 |
+
audio.device
|
| 449 |
+
)
|
| 450 |
+
if "privateuseone" in str(audio.device):
|
| 451 |
+
if not hasattr(self, "stft"):
|
| 452 |
+
self.stft = STFT(
|
| 453 |
+
filter_length=n_fft_new,
|
| 454 |
+
hop_length=hop_length_new,
|
| 455 |
+
win_length=win_length_new,
|
| 456 |
+
window="hann",
|
| 457 |
+
).to(audio.device)
|
| 458 |
+
magnitude = self.stft.transform(audio)
|
| 459 |
+
else:
|
| 460 |
+
fft = torch.stft(
|
| 461 |
+
audio,
|
| 462 |
+
n_fft=n_fft_new,
|
| 463 |
+
hop_length=hop_length_new,
|
| 464 |
+
win_length=win_length_new,
|
| 465 |
+
window=self.hann_window[keyshift_key],
|
| 466 |
+
center=center,
|
| 467 |
+
return_complex=True,
|
| 468 |
+
)
|
| 469 |
+
magnitude = torch.sqrt(fft.real.pow(2) + fft.imag.pow(2))
|
| 470 |
+
if keyshift != 0:
|
| 471 |
+
size = self.n_fft // 2 + 1
|
| 472 |
+
resize = magnitude.size(1)
|
| 473 |
+
if resize < size:
|
| 474 |
+
magnitude = F.pad(magnitude, (0, 0, 0, size - resize))
|
| 475 |
+
magnitude = magnitude[:, :size, :] * self.win_length / win_length_new
|
| 476 |
+
mel_output = torch.matmul(self.mel_basis, magnitude)
|
| 477 |
+
if self.is_half == True:
|
| 478 |
+
mel_output = mel_output.half()
|
| 479 |
+
log_mel_spec = torch.log(torch.clamp(mel_output, min=self.clamp))
|
| 480 |
+
return log_mel_spec
|
| 481 |
+
|
| 482 |
+
|
| 483 |
+
class RMVPE:
|
| 484 |
+
def __init__(self, model_path: str, is_half, device=None, use_jit=False):
|
| 485 |
+
self.resample_kernel = {}
|
| 486 |
+
self.resample_kernel = {}
|
| 487 |
+
self.is_half = is_half
|
| 488 |
+
if device is None:
|
| 489 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 490 |
+
self.device = device
|
| 491 |
+
self.mel_extractor = MelSpectrogram(
|
| 492 |
+
is_half, 128, 16000, 1024, 160, None, 30, 8000
|
| 493 |
+
).to(device)
|
| 494 |
+
if "privateuseone" in str(device):
|
| 495 |
+
import onnxruntime as ort
|
| 496 |
+
|
| 497 |
+
ort_session = ort.InferenceSession(
|
| 498 |
+
"%s/rmvpe.onnx" % os.environ["rmvpe_root"],
|
| 499 |
+
providers=["DmlExecutionProvider"],
|
| 500 |
+
)
|
| 501 |
+
self.model = ort_session
|
| 502 |
+
else:
|
| 503 |
+
if str(self.device) == "cuda":
|
| 504 |
+
self.device = torch.device("cuda:0")
|
| 505 |
+
|
| 506 |
+
def get_default_model():
|
| 507 |
+
model = E2E(4, 1, (2, 2))
|
| 508 |
+
ckpt = torch.load(model_path, map_location="cpu")
|
| 509 |
+
model.load_state_dict(ckpt)
|
| 510 |
+
model.eval()
|
| 511 |
+
if is_half:
|
| 512 |
+
model = model.half()
|
| 513 |
+
else:
|
| 514 |
+
model = model.float()
|
| 515 |
+
return model
|
| 516 |
+
|
| 517 |
+
self.model = get_default_model()
|
| 518 |
+
|
| 519 |
+
self.model = self.model.to(device)
|
| 520 |
+
cents_mapping = 20 * np.arange(360) + 1997.3794084376191
|
| 521 |
+
self.cents_mapping = np.pad(cents_mapping, (4, 4)) # 368
|
| 522 |
+
|
| 523 |
+
def mel2hidden(self, mel):
|
| 524 |
+
with torch.no_grad():
|
| 525 |
+
n_frames = mel.shape[-1]
|
| 526 |
+
n_pad = 32 * ((n_frames - 1) // 32 + 1) - n_frames
|
| 527 |
+
if n_pad > 0:
|
| 528 |
+
mel = F.pad(mel, (0, n_pad), mode="constant")
|
| 529 |
+
if "privateuseone" in str(self.device):
|
| 530 |
+
onnx_input_name = self.model.get_inputs()[0].name
|
| 531 |
+
onnx_outputs_names = self.model.get_outputs()[0].name
|
| 532 |
+
hidden = self.model.run(
|
| 533 |
+
[onnx_outputs_names],
|
| 534 |
+
input_feed={onnx_input_name: mel.cpu().numpy()},
|
| 535 |
+
)[0]
|
| 536 |
+
else:
|
| 537 |
+
mel = mel.half() if self.is_half else mel.float()
|
| 538 |
+
hidden = self.model(mel)
|
| 539 |
+
return hidden[:, :n_frames]
|
| 540 |
+
|
| 541 |
+
def decode(self, hidden, thred=0.03):
|
| 542 |
+
cents_pred = self.to_local_average_cents(hidden, thred=thred)
|
| 543 |
+
f0 = 10 * (2 ** (cents_pred / 1200))
|
| 544 |
+
f0[f0 == 10] = 0
|
| 545 |
+
# f0 = np.array([10 * (2 ** (cent_pred / 1200)) if cent_pred else 0 for cent_pred in cents_pred])
|
| 546 |
+
return f0
|
| 547 |
+
|
| 548 |
+
def infer_from_audio(self, audio, thred=0.03):
|
| 549 |
+
# torch.cuda.synchronize()
|
| 550 |
+
# t0 = ttime()
|
| 551 |
+
if not torch.is_tensor(audio):
|
| 552 |
+
audio = torch.from_numpy(audio)
|
| 553 |
+
mel = self.mel_extractor(
|
| 554 |
+
audio.float().to(self.device).unsqueeze(0), center=True
|
| 555 |
+
)
|
| 556 |
+
# print(123123123,mel.device.type)
|
| 557 |
+
# torch.cuda.synchronize()
|
| 558 |
+
# t1 = ttime()
|
| 559 |
+
hidden = self.mel2hidden(mel)
|
| 560 |
+
# torch.cuda.synchronize()
|
| 561 |
+
# t2 = ttime()
|
| 562 |
+
# print(234234,hidden.device.type)
|
| 563 |
+
if "privateuseone" not in str(self.device):
|
| 564 |
+
hidden = hidden.squeeze(0).cpu().numpy()
|
| 565 |
+
else:
|
| 566 |
+
hidden = hidden[0]
|
| 567 |
+
if self.is_half == True:
|
| 568 |
+
hidden = hidden.astype("float32")
|
| 569 |
+
|
| 570 |
+
f0 = self.decode(hidden, thred=thred)
|
| 571 |
+
# torch.cuda.synchronize()
|
| 572 |
+
# t3 = ttime()
|
| 573 |
+
# print("hmvpe:%s\t%s\t%s\t%s"%(t1-t0,t2-t1,t3-t2,t3-t0))
|
| 574 |
+
return f0
|
| 575 |
+
|
| 576 |
+
def to_local_average_cents(self, salience, thred=0.05):
|
| 577 |
+
# t0 = ttime()
|
| 578 |
+
center = np.argmax(salience, axis=1) # 帧长#index
|
| 579 |
+
salience = np.pad(salience, ((0, 0), (4, 4))) # 帧长,368
|
| 580 |
+
# t1 = ttime()
|
| 581 |
+
center += 4
|
| 582 |
+
todo_salience = []
|
| 583 |
+
todo_cents_mapping = []
|
| 584 |
+
starts = center - 4
|
| 585 |
+
ends = center + 5
|
| 586 |
+
for idx in range(salience.shape[0]):
|
| 587 |
+
todo_salience.append(salience[:, starts[idx] : ends[idx]][idx])
|
| 588 |
+
todo_cents_mapping.append(self.cents_mapping[starts[idx] : ends[idx]])
|
| 589 |
+
# t2 = ttime()
|
| 590 |
+
todo_salience = np.array(todo_salience) # 帧长,9
|
| 591 |
+
todo_cents_mapping = np.array(todo_cents_mapping) # 帧长,9
|
| 592 |
+
product_sum = np.sum(todo_salience * todo_cents_mapping, 1)
|
| 593 |
+
weight_sum = np.sum(todo_salience, 1) # 帧长
|
| 594 |
+
devided = product_sum / weight_sum # 帧长
|
| 595 |
+
# t3 = ttime()
|
| 596 |
+
maxx = np.max(salience, axis=1) # 帧长
|
| 597 |
+
devided[maxx <= thred] = 0
|
| 598 |
+
# t4 = ttime()
|
| 599 |
+
# print("decode:%s\t%s\t%s\t%s" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
|
| 600 |
+
return devided
|