Spaces:
Running
Running
| import math | |
| import numpy as np | |
| import torch | |
| from torch import nn | |
| from torch.nn import functional as F | |
| from munch import Munch | |
| import json | |
| class AttrDict(dict): | |
| def __init__(self, *args, **kwargs): | |
| super(AttrDict, self).__init__(*args, **kwargs) | |
| self.__dict__ = self | |
| def init_weights(m, mean=0.0, std=0.01): | |
| classname = m.__class__.__name__ | |
| if classname.find("Conv") != -1: | |
| m.weight.data.normal_(mean, std) | |
| def get_padding(kernel_size, dilation=1): | |
| return int((kernel_size * dilation - dilation) / 2) | |
| def convert_pad_shape(pad_shape): | |
| l = pad_shape[::-1] | |
| pad_shape = [item for sublist in l for item in sublist] | |
| return pad_shape | |
| def intersperse(lst, item): | |
| result = [item] * (len(lst) * 2 + 1) | |
| result[1::2] = lst | |
| return result | |
| def kl_divergence(m_p, logs_p, m_q, logs_q): | |
| """KL(P||Q)""" | |
| kl = (logs_q - logs_p) - 0.5 | |
| kl += ( | |
| 0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q) | |
| ) | |
| return kl | |
| def rand_gumbel(shape): | |
| """Sample from the Gumbel distribution, protect from overflows.""" | |
| uniform_samples = torch.rand(shape) * 0.99998 + 0.00001 | |
| return -torch.log(-torch.log(uniform_samples)) | |
| def rand_gumbel_like(x): | |
| g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device) | |
| return g | |
| def slice_segments(x, ids_str, segment_size=4): | |
| ret = torch.zeros_like(x[:, :, :segment_size]) | |
| for i in range(x.size(0)): | |
| idx_str = ids_str[i] | |
| idx_end = idx_str + segment_size | |
| ret[i] = x[i, :, idx_str:idx_end] | |
| return ret | |
| def slice_segments_audio(x, ids_str, segment_size=4): | |
| ret = torch.zeros_like(x[:, :segment_size]) | |
| for i in range(x.size(0)): | |
| idx_str = ids_str[i] | |
| idx_end = idx_str + segment_size | |
| ret[i] = x[i, idx_str:idx_end] | |
| return ret | |
| def rand_slice_segments(x, x_lengths=None, segment_size=4): | |
| b, d, t = x.size() | |
| if x_lengths is None: | |
| x_lengths = t | |
| ids_str_max = x_lengths - segment_size + 1 | |
| ids_str = ((torch.rand([b]).to(device=x.device) * ids_str_max).clip(0)).to( | |
| dtype=torch.long | |
| ) | |
| ret = slice_segments(x, ids_str, segment_size) | |
| return ret, ids_str | |
| def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4): | |
| position = torch.arange(length, dtype=torch.float) | |
| num_timescales = channels // 2 | |
| log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / ( | |
| num_timescales - 1 | |
| ) | |
| inv_timescales = min_timescale * torch.exp( | |
| torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment | |
| ) | |
| scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1) | |
| signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0) | |
| signal = F.pad(signal, [0, 0, 0, channels % 2]) | |
| signal = signal.view(1, channels, length) | |
| return signal | |
| def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4): | |
| b, channels, length = x.size() | |
| signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale) | |
| return x + signal.to(dtype=x.dtype, device=x.device) | |
| def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1): | |
| b, channels, length = x.size() | |
| signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale) | |
| return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis) | |
| def subsequent_mask(length): | |
| mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0) | |
| return mask | |
| def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): | |
| n_channels_int = n_channels[0] | |
| in_act = input_a + input_b | |
| t_act = torch.tanh(in_act[:, :n_channels_int, :]) | |
| s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) | |
| acts = t_act * s_act | |
| return acts | |
| def convert_pad_shape(pad_shape): | |
| l = pad_shape[::-1] | |
| pad_shape = [item for sublist in l for item in sublist] | |
| return pad_shape | |
| def shift_1d(x): | |
| x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1] | |
| return x | |
| def sequence_mask(length, max_length=None): | |
| if max_length is None: | |
| max_length = length.max() | |
| x = torch.arange(max_length, dtype=length.dtype, device=length.device) | |
| return x.unsqueeze(0) < length.unsqueeze(1) | |
| def avg_with_mask(x, mask): | |
| assert mask.dtype == torch.float, "Mask should be float" | |
| if mask.ndim == 2: | |
| mask = mask.unsqueeze(1) | |
| if mask.shape[1] == 1: | |
| mask = mask.expand_as(x) | |
| return (x * mask).sum() / mask.sum() | |
| def generate_path(duration, mask): | |
| """ | |
| duration: [b, 1, t_x] | |
| mask: [b, 1, t_y, t_x] | |
| """ | |
| device = duration.device | |
| b, _, t_y, t_x = mask.shape | |
| cum_duration = torch.cumsum(duration, -1) | |
| cum_duration_flat = cum_duration.view(b * t_x) | |
| path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype) | |
| path = path.view(b, t_x, t_y) | |
| path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1] | |
| path = path.unsqueeze(1).transpose(2, 3) * mask | |
| return path | |
| def clip_grad_value_(parameters, clip_value, norm_type=2): | |
| if isinstance(parameters, torch.Tensor): | |
| parameters = [parameters] | |
| parameters = list(filter(lambda p: p.grad is not None, parameters)) | |
| norm_type = float(norm_type) | |
| if clip_value is not None: | |
| clip_value = float(clip_value) | |
| total_norm = 0 | |
| for p in parameters: | |
| param_norm = p.grad.data.norm(norm_type) | |
| total_norm += param_norm.item() ** norm_type | |
| if clip_value is not None: | |
| p.grad.data.clamp_(min=-clip_value, max=clip_value) | |
| total_norm = total_norm ** (1.0 / norm_type) | |
| return total_norm | |
| def log_norm(x, mean=-4, std=4, dim=2): | |
| """ | |
| normalized log mel -> mel -> norm -> log(norm) | |
| """ | |
| x = torch.log(torch.exp(x * std + mean).norm(dim=dim)) | |
| return x | |
| def load_F0_models(path): | |
| # load F0 model | |
| from .JDC.model import JDCNet | |
| F0_model = JDCNet(num_class=1, seq_len=192) | |
| params = torch.load(path, map_location="cpu")["net"] | |
| F0_model.load_state_dict(params) | |
| _ = F0_model.train() | |
| return F0_model | |
| def modify_w2v_forward(self, output_layer=15): | |
| """ | |
| change forward method of w2v encoder to get its intermediate layer output | |
| :param self: | |
| :param layer: | |
| :return: | |
| """ | |
| from transformers.modeling_outputs import BaseModelOutput | |
| def forward( | |
| hidden_states, | |
| attention_mask=None, | |
| output_attentions=False, | |
| output_hidden_states=False, | |
| return_dict=True, | |
| ): | |
| all_hidden_states = () if output_hidden_states else None | |
| all_self_attentions = () if output_attentions else None | |
| conv_attention_mask = attention_mask | |
| if attention_mask is not None: | |
| # make sure padded tokens output 0 | |
| hidden_states = hidden_states.masked_fill( | |
| ~attention_mask.bool().unsqueeze(-1), 0.0 | |
| ) | |
| # extend attention_mask | |
| attention_mask = 1.0 - attention_mask[:, None, None, :].to( | |
| dtype=hidden_states.dtype | |
| ) | |
| attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min | |
| attention_mask = attention_mask.expand( | |
| attention_mask.shape[0], | |
| 1, | |
| attention_mask.shape[-1], | |
| attention_mask.shape[-1], | |
| ) | |
| hidden_states = self.dropout(hidden_states) | |
| if self.embed_positions is not None: | |
| relative_position_embeddings = self.embed_positions(hidden_states) | |
| else: | |
| relative_position_embeddings = None | |
| deepspeed_zero3_is_enabled = False | |
| for i, layer in enumerate(self.layers): | |
| if output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) | |
| dropout_probability = torch.rand([]) | |
| skip_the_layer = ( | |
| True | |
| if self.training and (dropout_probability < self.config.layerdrop) | |
| else False | |
| ) | |
| if not skip_the_layer or deepspeed_zero3_is_enabled: | |
| # under deepspeed zero3 all gpus must run in sync | |
| if self.gradient_checkpointing and self.training: | |
| layer_outputs = self._gradient_checkpointing_func( | |
| layer.__call__, | |
| hidden_states, | |
| attention_mask, | |
| relative_position_embeddings, | |
| output_attentions, | |
| conv_attention_mask, | |
| ) | |
| else: | |
| layer_outputs = layer( | |
| hidden_states, | |
| attention_mask=attention_mask, | |
| relative_position_embeddings=relative_position_embeddings, | |
| output_attentions=output_attentions, | |
| conv_attention_mask=conv_attention_mask, | |
| ) | |
| hidden_states = layer_outputs[0] | |
| if skip_the_layer: | |
| layer_outputs = (None, None) | |
| if output_attentions: | |
| all_self_attentions = all_self_attentions + (layer_outputs[1],) | |
| if i == output_layer - 1: | |
| break | |
| if output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| if not return_dict: | |
| return tuple( | |
| v | |
| for v in [hidden_states, all_hidden_states, all_self_attentions] | |
| if v is not None | |
| ) | |
| return BaseModelOutput( | |
| last_hidden_state=hidden_states, | |
| hidden_states=all_hidden_states, | |
| attentions=all_self_attentions, | |
| ) | |
| return forward | |
| MATPLOTLIB_FLAG = False | |
| def plot_spectrogram_to_numpy(spectrogram): | |
| global MATPLOTLIB_FLAG | |
| if not MATPLOTLIB_FLAG: | |
| import matplotlib | |
| import logging | |
| matplotlib.use("Agg") | |
| MATPLOTLIB_FLAG = True | |
| mpl_logger = logging.getLogger("matplotlib") | |
| mpl_logger.setLevel(logging.WARNING) | |
| import matplotlib.pylab as plt | |
| import numpy as np | |
| fig, ax = plt.subplots(figsize=(10, 2)) | |
| im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none") | |
| plt.colorbar(im, ax=ax) | |
| plt.xlabel("Frames") | |
| plt.ylabel("Channels") | |
| plt.tight_layout() | |
| fig.canvas.draw() | |
| data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="") | |
| data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) | |
| plt.close() | |
| return data | |
| def normalize_f0(f0_sequence): | |
| # Remove unvoiced frames (replace with -1) | |
| voiced_indices = np.where(f0_sequence > 0)[0] | |
| f0_voiced = f0_sequence[voiced_indices] | |
| # Convert to log scale | |
| log_f0 = np.log2(f0_voiced) | |
| # Calculate mean and standard deviation | |
| mean_f0 = np.mean(log_f0) | |
| std_f0 = np.std(log_f0) | |
| # Normalize the F0 sequence | |
| normalized_f0 = (log_f0 - mean_f0) / std_f0 | |
| # Create the normalized F0 sequence with unvoiced frames | |
| normalized_sequence = np.zeros_like(f0_sequence) | |
| normalized_sequence[voiced_indices] = normalized_f0 | |
| normalized_sequence[f0_sequence <= 0] = -1 # Assign -1 to unvoiced frames | |
| return normalized_sequence | |
| def build_model(args, stage="DiT"): | |
| if stage == "DiT": | |
| from modules.flow_matching import CFM | |
| from modules.length_regulator import InterpolateRegulator | |
| length_regulator = InterpolateRegulator( | |
| channels=args.length_regulator.channels, | |
| sampling_ratios=args.length_regulator.sampling_ratios, | |
| is_discrete=args.length_regulator.is_discrete, | |
| codebook_size=args.length_regulator.content_codebook_size, | |
| token_dropout_prob=args.length_regulator.token_dropout_prob if hasattr(args.length_regulator, "token_dropout_prob") else 0.0, | |
| token_dropout_range=args.length_regulator.token_dropout_range if hasattr(args.length_regulator, "token_dropout_range") else 0.0, | |
| n_codebooks=args.length_regulator.n_codebooks if hasattr(args.length_regulator, "n_codebooks") else 1, | |
| quantizer_dropout=args.length_regulator.quantizer_dropout if hasattr(args.length_regulator, "quantizer_dropout") else 0.0, | |
| f0_condition=args.length_regulator.f0_condition if hasattr(args.length_regulator, "f0_condition") else False, | |
| n_f0_bins=args.length_regulator.n_f0_bins if hasattr(args.length_regulator, "n_f0_bins") else 512, | |
| ) | |
| cfm = CFM(args) | |
| nets = Munch( | |
| cfm=cfm, | |
| length_regulator=length_regulator, | |
| ) | |
| elif stage == 'codec': | |
| from dac.model.dac import Encoder | |
| from modules.quantize import ( | |
| FAquantizer, | |
| ) | |
| encoder = Encoder( | |
| d_model=args.DAC.encoder_dim, | |
| strides=args.DAC.encoder_rates, | |
| d_latent=1024, | |
| causal=args.causal, | |
| lstm=args.lstm, | |
| ) | |
| quantizer = FAquantizer( | |
| in_dim=1024, | |
| n_p_codebooks=1, | |
| n_c_codebooks=args.n_c_codebooks, | |
| n_t_codebooks=2, | |
| n_r_codebooks=3, | |
| codebook_size=1024, | |
| codebook_dim=8, | |
| quantizer_dropout=0.5, | |
| causal=args.causal, | |
| separate_prosody_encoder=args.separate_prosody_encoder, | |
| timbre_norm=args.timbre_norm, | |
| ) | |
| nets = Munch( | |
| encoder=encoder, | |
| quantizer=quantizer, | |
| ) | |
| else: | |
| raise ValueError(f"Unknown stage: {stage}") | |
| return nets | |
| def load_checkpoint( | |
| model, | |
| optimizer, | |
| path, | |
| load_only_params=True, | |
| ignore_modules=[], | |
| is_distributed=False, | |
| ): | |
| state = torch.load(path, map_location="cpu") | |
| params = state["net"] | |
| for key in model: | |
| if key in params and key not in ignore_modules: | |
| if not is_distributed: | |
| # strip prefix of DDP (module.), create a new OrderedDict that does not contain the prefix | |
| for k in list(params[key].keys()): | |
| if k.startswith("module."): | |
| params[key][k[len("module.") :]] = params[key][k] | |
| del params[key][k] | |
| model_state_dict = model[key].state_dict() | |
| # 过滤出形状匹配的键值对 | |
| filtered_state_dict = { | |
| k: v | |
| for k, v in params[key].items() | |
| if k in model_state_dict and v.shape == model_state_dict[k].shape | |
| } | |
| skipped_keys = set(params[key].keys()) - set(filtered_state_dict.keys()) | |
| if skipped_keys: | |
| print( | |
| f"Warning: Skipped loading some keys due to shape mismatch: {skipped_keys}" | |
| ) | |
| print("%s loaded" % key) | |
| model[key].load_state_dict(filtered_state_dict, strict=False) | |
| _ = [model[key].eval() for key in model] | |
| if not load_only_params: | |
| epoch = state["epoch"] + 1 | |
| iters = state["iters"] | |
| optimizer.load_state_dict(state["optimizer"]) | |
| optimizer.load_scheduler_state_dict(state["scheduler"]) | |
| else: | |
| epoch = 0 | |
| iters = 0 | |
| return model, optimizer, epoch, iters | |
| def recursive_munch(d): | |
| if isinstance(d, dict): | |
| return Munch((k, recursive_munch(v)) for k, v in d.items()) | |
| elif isinstance(d, list): | |
| return [recursive_munch(v) for v in d] | |
| else: | |
| return d | |