RAG_Chatbot / app.py
anshharora's picture
Upload 3 files
d950883 verified
import gradio as gr
from groq import Groq, RateLimitError
import pandas as pd
from PIL import Image
import pytesseract
import pdfplumber
from pdf2image import convert_from_path
import os
import time
from dotenv import load_dotenv
# Load environment variables from .env file
load_dotenv()
# Set the path to Tesseract executable
pytesseract.pytesseract.tesseract_cmd = os.getenv("TESSERACT_CMD")
# Set the path to Poppler for PDF image extraction
poppler_path = os.getenv("POPPLER_PATH")
# Your Groq API key
YOUR_GROQ_API_KEY = os.getenv("GROQ_API_KEY")
# Initialize Groq client
client = Groq(api_key=YOUR_GROQ_API_KEY)
# Global variable to store extracted text
extracted_text = ""
def extract_text_from_image(image):
return pytesseract.image_to_string(image)
def remove_header_footer(image, header_height=3.9, footer_height=2.27):
width, height = image.size
header_height_pixels = int(header_height * 96) # Convert inches to pixels (assuming 96 DPI)
footer_height_pixels = int(footer_height * 96)
cropping_box = (0, header_height_pixels, width, height - footer_height_pixels)
return image.crop(cropping_box)
def handle_file(file, page_range=None):
global extracted_text
extracted_text = ""
if file is None:
return None, "No file uploaded"
file_name = file.name.lower()
if file_name.endswith(('png', 'jpg', 'jpeg')):
image = Image.open(file)
extracted_text = extract_text_from_image(image)
return image, extracted_text
elif file_name.endswith('pdf'):
text = ""
pdf_images = []
start_page = 1
end_page = None
if page_range:
try:
start_page, end_page = map(int, page_range.split('-'))
except ValueError:
start_page = int(page_range)
end_page = start_page
with pdfplumber.open(file) as pdf_file:
total_pages = len(pdf_file.pages)
end_page = end_page or total_pages
for page_number in range(start_page - 1, end_page):
page = pdf_file.pages[page_number]
page_text = page.extract_text() or ""
text += f"Page {page_number + 1}:\n{page_text}\n"
try:
page_images = convert_from_path(file.name, first_page=page_number + 1, last_page=page_number + 1, poppler_path=poppler_path)
page_images = [remove_header_footer(img) for img in page_images]
pdf_images.extend(page_images)
for img in page_images:
image_text = extract_text_from_image(img)
text += f"Page {page_number + 1} (Image):\n{image_text}\n"
except Exception as e:
text += f"Error processing images on page {page_number + 1}: {e}\n"
extracted_text = text
if pdf_images:
return pdf_images[0], extracted_text
else:
return None, extracted_text
elif file_name.endswith(('xls', 'xlsx')):
df = pd.read_excel(file)
extracted_text = df.to_string()
return None, extracted_text
elif file_name.endswith('csv'):
df = pd.read_csv(file)
extracted_text = df.to_string()
return None, extracted_text
else:
return None, "Unsupported file type"
def split_text(text, max_length=2000):
words = text.split()
chunks = []
current_chunk = []
current_length = 0
for word in words:
word_length = len(word) + 1 # +1 for the space or punctuation
if current_length + word_length > max_length:
chunks.append(" ".join(current_chunk))
current_chunk = [word]
current_length = word_length
else:
current_chunk.append(word)
current_length += word_length
if current_chunk:
chunks.append(" ".join(current_chunk))
return chunks
def is_rate_limited():
# Implement a method to check rate limit status if needed
return False
def chat_groq_sync(user_input, history, extracted_text):
retries = 5
while retries > 0:
rate_limit_status = is_rate_limited()
if rate_limit_status:
return f"{rate_limit_status} Please try again later."
messages = [{"role": "system", "content": "The following text is extracted from the uploaded file:\n" + extracted_text}]
for msg in history:
messages.append({"role": "user", "content": msg[0]})
messages.append({"role": "assistant", "content": msg[1]})
messages.append({"role": "user", "content": user_input})
try:
response = client.chat.completions.create(
model="llama3-70b-8192",
messages=messages,
max_tokens=1000,
temperature=0.4
)
response_content = response.choices[0].message.content
return response_content
except RateLimitError as e:
error_info = e.args[0] if e.args else {}
error_message = error_info.get('error', {}).get('message', '') if isinstance(error_info, dict) else str(error_info)
wait_time = 60
if 'try again in' in error_message:
try:
wait_time = float(error_message.split('try again in ')[-1].split('s')[0])
except ValueError:
pass
print(f"Rate limit error: {error_message}")
print(f"Retrying in {wait_time:.2f} seconds...")
retries -= 1
if retries > 0:
time.sleep(wait_time)
else:
return "Rate limit exceeded. Please try again later."
except Exception as e:
print(f"An unexpected error occurred: {e}")
return "An unexpected error occurred. Please try again later."
def update_chat(user_input, history):
global extracted_text
response = chat_groq_sync(user_input, history, extracted_text)
history.append((user_input, response))
return history, history, ""
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("# RAG Chatbot")
gr.Markdown("Check out the [GitHub](https://github.com/anshh-arora?tab=repositories) for more information.")
file = gr.File(label="Upload your file")
page_range = gr.Textbox(label="If the uploaded document is a PDF and has more than 10 pages, enter the page range (e.g., 1-3) or specific page number (e.g., 2):", lines=1, visible=False, interactive=True)
file_upload_button = gr.Button("Upload File")
image_display = gr.Image(label="Uploaded Image", visible=False)
extracted_text_display = gr.Textbox(label="Extracted Text", interactive=False)
with gr.Column(scale=3):
gr.Markdown("# Chat with your file")
history = gr.State([])
with gr.Column():
chatbot = gr.Chatbot(height=500, bubble_full_width=False)
user_input = gr.Textbox(placeholder="Enter Your Query", visible=True, scale=7, interactive=True)
clear_btn = gr.Button("Clear")
undo_btn = gr.Button("Undo")
user_input.submit(update_chat, [user_input, history], [chatbot, history, user_input])
clear_btn.click(lambda: ([], []), None, [chatbot, history])
undo_btn.click(lambda h: h[:-2], history, history)
def show_page_range_input(file):
if file and file.name.lower().endswith('pdf'):
with pdfplumber.open(file) as pdf_file:
if len(pdf_file.pages) > 10:
return gr.update(visible=True)
return gr.update(visible=False)
file.change(show_page_range_input, inputs=file, outputs=page_range)
file_upload_button.click(handle_file, [file, page_range], [image_display, extracted_text_display])
if __name__ == "__main__":
demo.launch(share=True)