chore: Update requirements.txt and add pyproject.toml file with project dependencies
Browse files- law-bot.ipynb +342 -0
law-bot.ipynb
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 25,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import pickle, os, numpy as np\n",
|
10 |
+
"from tqdm import tqdm\n",
|
11 |
+
"from langchain.schema import Document\n",
|
12 |
+
"from langchain.vectorstores import FAISS\n",
|
13 |
+
"from langchain.schema import Document\n",
|
14 |
+
"from langchain_community.embeddings import HuggingFaceBgeEmbeddings\n",
|
15 |
+
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
|
16 |
+
"from langchain_community.retrievers import BM25Retriever\n",
|
17 |
+
"from langchain.retrievers import EnsembleRetriever"
|
18 |
+
]
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"cell_type": "code",
|
22 |
+
"execution_count": 17,
|
23 |
+
"metadata": {},
|
24 |
+
"outputs": [
|
25 |
+
{
|
26 |
+
"name": "stdout",
|
27 |
+
"output_type": "stream",
|
28 |
+
"text": [
|
29 |
+
"λ°μ΄ν° λ‘λ μ€...\n",
|
30 |
+
"μ΄ 2736κ°μ λ°°μΉκ° λ‘λλμμ΅λλ€.\n"
|
31 |
+
]
|
32 |
+
}
|
33 |
+
],
|
34 |
+
"source": [
|
35 |
+
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\"\n",
|
36 |
+
"\n",
|
37 |
+
"# cases.pkl νμΌμμ λ°μ΄ν° λ‘λ\n",
|
38 |
+
"print(\"λ°μ΄ν° λ‘λ μ€...\")\n",
|
39 |
+
"with open(\"/Users/anpigon/Documents/Embed/αα
₯αΈαα
―α«αα
‘α«α
α
¨/Result2.pkl\", \"rb\") as file:\n",
|
40 |
+
" data = pickle.load(file)\n",
|
41 |
+
"\n",
|
42 |
+
"print(f\"μ΄ {len(data)}κ°μ λ°°μΉκ° λ‘λλμμ΅λλ€.\")"
|
43 |
+
]
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"cell_type": "code",
|
47 |
+
"execution_count": 11,
|
48 |
+
"metadata": {},
|
49 |
+
"outputs": [],
|
50 |
+
"source": [
|
51 |
+
"# μλ² λ© λͺ¨λΈ μ€μ (μ€μ λ‘ μλ² λ©νμ§λ μμ)\n",
|
52 |
+
"embeddings = HuggingFaceBgeEmbeddings(model_name=\"BAAI/bge-m3\")"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"cell_type": "code",
|
57 |
+
"execution_count": 18,
|
58 |
+
"metadata": {},
|
59 |
+
"outputs": [],
|
60 |
+
"source": [
|
61 |
+
"# ν
μ€νΈ λΆν κΈ° μ€μ \n",
|
62 |
+
"text_splitter = RecursiveCharacterTextSplitter(\n",
|
63 |
+
" chunk_size=2000,\n",
|
64 |
+
" chunk_overlap=200,\n",
|
65 |
+
" length_function=len,\n",
|
66 |
+
")"
|
67 |
+
]
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"cell_type": "code",
|
71 |
+
"execution_count": 19,
|
72 |
+
"metadata": {},
|
73 |
+
"outputs": [
|
74 |
+
{
|
75 |
+
"name": "stdout",
|
76 |
+
"output_type": "stream",
|
77 |
+
"text": [
|
78 |
+
"λ¬Έμ μ²λ¦¬ λ° μ²νΉ μ€...\n"
|
79 |
+
]
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"name": "stderr",
|
83 |
+
"output_type": "stream",
|
84 |
+
"text": [
|
85 |
+
"100%|ββββββββββ| 2736/2736 [00:42<00:00, 64.15it/s] \n"
|
86 |
+
]
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"source": [
|
90 |
+
"# λ¬Έμ μ²λ¦¬ λ° μ²νΉ\n",
|
91 |
+
"print(\"λ¬Έμ μ²λ¦¬ λ° μ²νΉ μ€...\")\n",
|
92 |
+
"documents = []\n",
|
93 |
+
"text_embedding_pairs = []\n",
|
94 |
+
"\n",
|
95 |
+
"for batch in tqdm(data):\n",
|
96 |
+
" original_sentences = batch[1] # λ°°μΉλΉ 32κ°μ μλ³Έ λ¬Έμ₯\n",
|
97 |
+
" embedding_vectors = batch[0] # λ°°μΉλΉ 32κ°μ μλ² λ© λ²‘ν°\n",
|
98 |
+
"\n",
|
99 |
+
" for sentence, vector in zip(original_sentences, embedding_vectors):\n",
|
100 |
+
" chunks = text_splitter.split_text(sentence)\n",
|
101 |
+
" for chunk in chunks:\n",
|
102 |
+
" doc = Document(page_content=chunk)\n",
|
103 |
+
" documents.append(doc)\n",
|
104 |
+
" text_embedding_pairs.append((chunk, vector))"
|
105 |
+
]
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"cell_type": "code",
|
109 |
+
"execution_count": 12,
|
110 |
+
"metadata": {},
|
111 |
+
"outputs": [
|
112 |
+
{
|
113 |
+
"name": "stdout",
|
114 |
+
"output_type": "stream",
|
115 |
+
"text": [
|
116 |
+
"FAISS μΈλ±μ€ λΆλ¬μ€κΈ°\n",
|
117 |
+
"FAISS μΈλ±μ€ λΆλ¬μ€κΈ° μλ£\n"
|
118 |
+
]
|
119 |
+
}
|
120 |
+
],
|
121 |
+
"source": [
|
122 |
+
"# FAISS μΈλ±μ€ μμ±\n",
|
123 |
+
"print(\"FAISS μΈλ±μ€ λΆλ¬μ€κΈ°\")\n",
|
124 |
+
"FAISS_DB_INDEX = \"./index_faiss\"\n",
|
125 |
+
"faiss_db = FAISS.load_local(\n",
|
126 |
+
" FAISS_DB_INDEX, embeddings, allow_dangerous_deserialization=True\n",
|
127 |
+
")\n",
|
128 |
+
"faiss_retriever = faiss_db.as_retriever(search_type=\"mmr\", search_kwargs={\"k\": 10})\n",
|
129 |
+
"print(\"FAISS μΈλ±μ€ λΆλ¬μ€κΈ° μλ£\")"
|
130 |
+
]
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"cell_type": "code",
|
134 |
+
"execution_count": 22,
|
135 |
+
"metadata": {},
|
136 |
+
"outputs": [
|
137 |
+
{
|
138 |
+
"name": "stdout",
|
139 |
+
"output_type": "stream",
|
140 |
+
"text": [
|
141 |
+
"BM25Retriever λΆλ¬μ€κΈ°\n",
|
142 |
+
"BM25 리νΈλ¦¬λ² λΆλ¬μ€κΈ° μλ£\n"
|
143 |
+
]
|
144 |
+
}
|
145 |
+
],
|
146 |
+
"source": [
|
147 |
+
"from kiwipiepy import Kiwi\n",
|
148 |
+
"from typing import List\n",
|
149 |
+
"\n",
|
150 |
+
"kiwi = Kiwi()\n",
|
151 |
+
"\n",
|
152 |
+
"\n",
|
153 |
+
"def kiwi_tokenize(text):\n",
|
154 |
+
" return [token.form for token in kiwi.tokenize(text)]\n",
|
155 |
+
"\n",
|
156 |
+
"\n",
|
157 |
+
"print(\"BM25Retriever λΆλ¬μ€κΈ°\")\n",
|
158 |
+
"# bm25_retriever = BM25Retriever.from_documents(documents, k=10)\n",
|
159 |
+
"with open(\"./index_bm25/kiwi.pkl\", \"rb\") as f:\n",
|
160 |
+
" bm25_retriever = pickle.load(f)\n",
|
161 |
+
"print(\"BM25 리νΈλ¦¬λ² λΆλ¬μ€κΈ° μλ£\")"
|
162 |
+
]
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"cell_type": "code",
|
166 |
+
"execution_count": 26,
|
167 |
+
"metadata": {},
|
168 |
+
"outputs": [],
|
169 |
+
"source": [
|
170 |
+
"ensemble_retriever = EnsembleRetriever(\n",
|
171 |
+
" retrievers=[bm25_retriever, faiss_retriever], weights=[0.7, 0.3], search_type=\"mmr\"\n",
|
172 |
+
")"
|
173 |
+
]
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"cell_type": "code",
|
177 |
+
"execution_count": 27,
|
178 |
+
"metadata": {},
|
179 |
+
"outputs": [],
|
180 |
+
"source": [
|
181 |
+
"from operator import itemgetter\n",
|
182 |
+
"from langchain.callbacks.base import BaseCallbackHandler\n",
|
183 |
+
"from langchain_core.prompts import (\n",
|
184 |
+
" HumanMessagePromptTemplate,\n",
|
185 |
+
" SystemMessagePromptTemplate,\n",
|
186 |
+
")\n",
|
187 |
+
"from langchain_openai import ChatOpenAI\n",
|
188 |
+
"from langchain_anthropic import ChatAnthropic\n",
|
189 |
+
"from langchain_core.output_parsers import StrOutputParser\n",
|
190 |
+
"from langchain_community.chat_message_histories import ChatMessageHistory\n",
|
191 |
+
"from langchain.schema import HumanMessage, AIMessage, SystemMessage\n",
|
192 |
+
"from langchain.schema.runnable import RunnablePassthrough\n",
|
193 |
+
"from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
|
194 |
+
"\n",
|
195 |
+
"\n",
|
196 |
+
"class StreamCallback(BaseCallbackHandler):\n",
|
197 |
+
" def on_llm_new_token(self, token: str, **kwargs):\n",
|
198 |
+
" print(token, end=\"\", flush=True)\n",
|
199 |
+
"\n",
|
200 |
+
"\n",
|
201 |
+
"# ν둬ννΈ ν
νλ¦Ώ μ€μ \n",
|
202 |
+
"prompt_template = \"\"\"\n",
|
203 |
+
"λΉμ μ νμ¬μ΄μ 20λ
μ°¨ λ²λ₯ μ λ¬Έκ°μ
λλ€. μ£Όμ΄μ§ μ§λ¬Έμ λν΄ λ¬Έμμ μ 보λ₯Ό μ΅λν νμ©νμ¬ λ΅λ³νμΈμ.\n",
|
204 |
+
"μ§λ¬Έμλ μκΈ° μν©μ μ€λͺ
ν κ²μ΄λ©°, μ§λ¬Έμμ μν©κ³Ό λΉμ·ν νλ‘λ₯Ό μ€λͺ
ν΄μ€μΌ νλ©°, κ°μ₯ μ΅κ·Ό μ¬κ±΄ μμΌλ‘ μκ°λλλ€.\n",
|
205 |
+
"μ΅λν μμΈνκ² λ΅λ³ν©λλ€. μ΄λ±νμμ΄ μ΄ν΄ν μ λλ‘ μ΄ν΄νκΈ° μ½λλ‘ λ΅λ³νκ³ , νκΈλ‘ μμ±νμΈμ.\n",
|
206 |
+
"μ§λ¬Έμ λν λ΅λ³ μ¬, [μ¬κ±΄λͺ
1]..., [μ¬κ±΄λͺ
2]... μμλ‘ μ€λͺ
ν΄μΌ ν©λλ€.\n",
|
207 |
+
"λ¬Έμμμ λ΅λ³μ μ°Ύμ μ μλ κ²½μ°, \"λ¬Έμμ λ΅λ³μ΄ μμ΅λλ€.\"λΌκ³ λ΅λ³νμΈμ.\n",
|
208 |
+
"λ΅λ³μ μΆμ²(source)λ₯Ό λ°λμ νκΈ°ν΄μ£ΌμΈμ. μΆμ²λ λ©νλ°μ΄ν°μ νλ‘μΌλ ¨λ²νΈ, μ¬κ±΄λͺ
, μ¬κ±΄λ²νΈ μμΌλ‘ νκΈ° ν©λλ€.\n",
|
209 |
+
"\n",
|
210 |
+
"# μ£Όμ΄μ§ λ¬Έμ:\n",
|
211 |
+
"{context}\n",
|
212 |
+
"\n",
|
213 |
+
"# μ§λ¬Έ: {question}\n",
|
214 |
+
"\n",
|
215 |
+
"# λ΅λ³:\n",
|
216 |
+
"\n",
|
217 |
+
"# μΆμ²:\n",
|
218 |
+
"- source1\n",
|
219 |
+
"- source2\n",
|
220 |
+
"- ...\n",
|
221 |
+
"\"\"\"\n",
|
222 |
+
"\n",
|
223 |
+
"# LLM λ° μΆλ ₯ νμ μ€μ \n",
|
224 |
+
"llm = ChatOpenAI(\n",
|
225 |
+
" model=\"gpt-4o\",\n",
|
226 |
+
" temperature=0,\n",
|
227 |
+
" streaming=True,\n",
|
228 |
+
" verbose=True,\n",
|
229 |
+
" callbacks=[StreamCallback()],\n",
|
230 |
+
")\n",
|
231 |
+
"# llm = ChatAnthropic(model=\"claude-3-5-sonnet-20240620\", temperature=0, streaming=True, callbacks=[StreamCallback()])\n",
|
232 |
+
"\n",
|
233 |
+
"output_parser = StrOutputParser()\n",
|
234 |
+
"\n",
|
235 |
+
"# μ±ν
κΈ°λ‘μ μ μ₯ν λ©λͺ¨λ¦¬ μ΄κΈ°ν\n",
|
236 |
+
"chat_history = ChatMessageHistory()\n",
|
237 |
+
"\n",
|
238 |
+
"# ν둬ννΈ μ€μ \n",
|
239 |
+
"prompt = ChatPromptTemplate.from_messages(\n",
|
240 |
+
" [\n",
|
241 |
+
" (\"system\", prompt_template),\n",
|
242 |
+
" MessagesPlaceholder(variable_name=\"history\"),\n",
|
243 |
+
" (\"human\", \"{question}\"),\n",
|
244 |
+
" ]\n",
|
245 |
+
").partial(history=chat_history.messages)\n",
|
246 |
+
"\n",
|
247 |
+
"# Runnable κ°μ²΄ μμ±\n",
|
248 |
+
"runnable = RunnablePassthrough.assign(\n",
|
249 |
+
" context=itemgetter(\"question\") | ensemble_retriever,\n",
|
250 |
+
")\n",
|
251 |
+
"# LCEL μ²΄μΈ κ΅¬μ±\n",
|
252 |
+
"chain = runnable | prompt | llm | output_parser\n",
|
253 |
+
"\n",
|
254 |
+
"\n",
|
255 |
+
"def rag_chain(question):\n",
|
256 |
+
" response = chain.invoke({\"question\": question})\n",
|
257 |
+
" chat_history.add_user_message(question)\n",
|
258 |
+
" chat_history.add_ai_message(response)\n",
|
259 |
+
" return response"
|
260 |
+
]
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"cell_type": "code",
|
264 |
+
"execution_count": 28,
|
265 |
+
"metadata": {},
|
266 |
+
"outputs": [
|
267 |
+
{
|
268 |
+
"name": "stdout",
|
269 |
+
"output_type": "stream",
|
270 |
+
"text": [
|
271 |
+
"μλ
νμΈμ. νμ¬λμ
λλ€. μ§λ¬Ένμ μν©κ³Ό λΉμ·ν νλ‘λ₯Ό μ°Ύμ보μμ΅λλ€. μλμ λ κ°μ§ μ¬λ‘λ₯Ό μκ°ν΄λλ¦¬κ² μ΅λλ€.\n",
|
272 |
+
"\n",
|
273 |
+
"### [μ¬κ±΄λͺ
1] λΆκ³΅μ ν λ²λ₯ νμμ κ΄ν λ²λ¦¬λ₯Ό μ€ν΄ν μλ²μ΄ μλ μ€λ‘\n",
|
274 |
+
"- **μΆμ²**: 214987, μν΄λ°°μλ±, 68λ€88, 1968.07.30\n",
|
275 |
+
"- **μ¬κ±΄ λ΄μ©**: 맀λμΈμ΄ λΆλμ°μ 맀λν λΉμ, 맀μμΈμ΄ 맀λμΈμ κΆλ°ν μ¬μ μ μκ³ μμκ³ , 맀λμΈμ΄ νκΈ°λ₯Ό κΊΌλ €νλ λΆλΆκΉμ§ 맀μμΈμ μꡬμ μν΄ ν¨κ» νμ§ μμ μ μμμ΅λλ€. 맀맀λͺ©μ λ¬Όμ κ²½κ³νμ μΈ‘λλ 맀μμΈμ΄ μΌλ°©μ μΌλ‘ νκ³ , λΆλμ° κ°κ²©λ λ§€μ° μ λ ΄νκ² μ±
μ λμμ΅λλ€. μ΄ μ¬κ±΄μμ λ²μμ μ΄λ¬ν 맀맀νμκ° λΆκ³΅μ ν λ²λ₯ νμμ ν΄λΉνλ€κ³ νλ¨νμμ΅λλ€.\n",
|
276 |
+
"\n",
|
277 |
+
"### [μ¬κ±΄λͺ
2] μκ³ μ μ£Όμ₯μ΄ μ°©μ€λ‘ μΈν μμ¬νμμ μ·¨μλ‘λ 보μ¬μ§λ―λ‘, μ΄λ₯Ό μλͺ
μΉ μμ μλ²μ΄ μλ μ\n",
|
278 |
+
"- **μΆμ²**: 153300, 맀맀λκΈλ°νλ±, 66λ€1289, 1966.09.20\n",
|
279 |
+
"- **μ¬κ±΄ λ΄μ©**: μκ³ κ° νΌκ³ λ‘λΆν° 맀μν λ
Ό 1,389ν μ€ μΌλΆλ νμ²μΌλ‘ λμ΄ μμ΄ κ²½μν μ μλ λ
μ΄μκ³ , λλ¨Έμ§ λ
μ μ΄λ―Έ λ€λ₯Έ μ¬λλ€μ΄ κ²½μνκ³ μμμ΅λλ€. μκ³ λ μ΄λ¬ν μ¬μ€μ μμ§ λͺ»ν μ± λ§€λ§€κ³μ½μ 체결νμκ³ , λμ€μ μ΄λ₯Ό μκ² λμ΄ κ³μ½μ 무ν¨λ‘ μ£Όμ₯νμμ΅λλ€. λ²μμ μκ³ μ μ£Όμ₯μ΄ μ°©μ€λ‘ μΈν μμ¬νμμ μ·¨μλ‘λ λ³Ό μ μλ€κ³ νλ¨νμμ΅λλ€.\n",
|
280 |
+
"\n",
|
281 |
+
"μ΄ λ μ¬κ±΄ λͺ¨λ 맀μμΈμ΄ 맀맀 λμ λΆλμ°μ μ€μ μνλ₯Ό μ λλ‘ μμ§ λͺ»ν μ± κ³μ½μ 체결ν ν, κ·Έ μ¬μ€μ μκ² λμ΄ λ²μ λΆμμ΄ λ°μν μ¬λ‘μ
λλ€. μ§λ¬Έμλμ μν©κ³Ό μ μ¬ν μ μ΄ λ§μΌλ―λ‘ μ°Έκ³ νμκΈ° λ°λλλ€.\n",
|
282 |
+
"\n",
|
283 |
+
"### μμ½\n",
|
284 |
+
"- **μ¬κ±΄λͺ
1**: 맀λμΈμ κΆλ°ν μ¬μ μ μ΄μ©νμ¬ λΆλμ°μ μ λ ΄νκ² λ§€μν κ²½μ°.\n",
|
285 |
+
"- **μ¬κ±΄λͺ
2**: 맀μν λΆλμ°μ΄ μ€μ λ‘λ κ²½μν μ μλ λ
μ΄μμμ λμ€μ μκ² λ κ²½μ°.\n",
|
286 |
+
"\n",
|
287 |
+
"μ΄μ κ°μ μ¬λ‘λ₯Ό ν΅ν΄ λ²μ λμ λ°©μμ λͺ¨μν΄λ³΄μκΈ° λ°λλλ€. μΆκ°μ μΈ λ²μ μ‘°μΈμ΄ νμνμλ©΄ λ³νΈμ¬μ μλ΄νμκΈ°λ₯Ό κΆμ₯λ립λλ€.\n",
|
288 |
+
"\n",
|
289 |
+
"κ°μ¬ν©λλ€.\n",
|
290 |
+
"\n",
|
291 |
+
"### μΆμ²\n",
|
292 |
+
"- 214987, μν΄λ°°μλ±, 68λ€88, 1968.07.30\n",
|
293 |
+
"- 153300, 맀맀λκΈλ°νλ±, 66λ€1289, 1966.09.20"
|
294 |
+
]
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"data": {
|
298 |
+
"text/plain": [
|
299 |
+
"'μλ
νμΈμ. νμ¬λμ
λλ€. μ§λ¬Ένμ μν©κ³Ό λΉμ·ν νλ‘λ₯Ό μ°Ύμ보μμ΅λλ€. μλμ λ κ°μ§ μ¬λ‘λ₯Ό μκ°ν΄λλ¦¬κ² μ΅λλ€.\\n\\n### [μ¬κ±΄λͺ
1] λΆκ³΅μ ν λ²λ₯ νμμ κ΄ν λ²λ¦¬λ₯Ό μ€ν΄ν μλ²μ΄ μλ μ€λ‘\\n- **μΆμ²**: 214987, μν΄λ°°μλ±, 68λ€88, 1968.07.30\\n- **μ¬κ±΄ λ΄μ©**: 맀λμΈμ΄ λΆλμ°μ 맀λν λΉμ, 맀μμΈμ΄ 맀λμΈμ κΆλ°ν μ¬μ μ μκ³ μμκ³ , 맀λμΈμ΄ νκΈ°λ₯Ό κΊΌλ €νλ λΆλΆκΉμ§ 맀μμΈμ μꡬμ μν΄ ν¨κ» νμ§ μμ μ μμμ΅λλ€. 맀맀λͺ©μ λ¬Όμ κ²½κ³νμ μΈ‘λλ 맀μμΈμ΄ μΌλ°©μ μΌλ‘ νκ³ , λΆλμ° κ°κ²©λ λ§€μ° μ λ ΄νκ² μ±
μ λμμ΅λλ€. μ΄ μ¬κ±΄μμ λ²μμ μ΄λ¬ν 맀맀νμκ° λΆκ³΅μ ν λ²λ₯ νμμ ν΄λΉνλ€κ³ νλ¨νμμ΅λλ€.\\n\\n### [μ¬κ±΄λͺ
2] μκ³ μ μ£Όμ₯μ΄ μ°©μ€λ‘ μΈν μμ¬νμμ μ·¨μλ‘λ 보μ¬μ§λ―λ‘, μ΄λ₯Ό μλͺ
μΉ μμ μλ²μ΄ μλ μ\\n- **μΆμ²**: 153300, 맀맀λκΈλ°νλ±, 66λ€1289, 1966.09.20\\n- **μ¬κ±΄ λ΄μ©**: μκ³ κ° νΌκ³ λ‘λΆν° 맀μν λ
Ό 1,389ν μ€ μΌλΆλ νμ²μΌλ‘ λμ΄ μμ΄ κ²½μν μ μλ λ
μ΄μκ³ , λλ¨Έμ§ λ
μ μ΄λ―Έ λ€λ₯Έ μ¬λλ€μ΄ κ²½μνκ³ μμμ΅λλ€. μκ³ λ μ΄λ¬ν μ¬μ€μ μμ§ λͺ»ν μ± λ§€λ§€κ³μ½μ 체결νμκ³ , λμ€μ μ΄λ₯Ό μκ² λμ΄ κ³μ½μ 무ν¨λ‘ μ£Όμ₯νμμ΅λλ€. λ²μμ μκ³ μ μ£Όμ₯μ΄ μ°©μ€λ‘ μΈν μμ¬νμμ μ·¨μλ‘λ λ³Ό μ μλ€κ³ νλ¨νμμ΅λλ€.\\n\\nμ΄ λ μ¬κ±΄ λͺ¨λ 맀μμΈμ΄ 맀맀 λμ λΆλμ°μ μ€μ μνλ₯Ό μ λλ‘ μμ§ λͺ»ν μ± κ³μ½μ 체결ν ν, κ·Έ μ¬μ€μ μκ² λμ΄ λ²μ λΆμμ΄ λ°μν μ¬λ‘μ
λλ€. μ§λ¬Έμλμ μν©κ³Ό μ μ¬ν μ μ΄ λ§μΌλ―λ‘ μ°Έκ³ νμκΈ° λ°λλλ€.\\n\\n### μμ½\\n- **μ¬κ±΄λͺ
1**: 맀λμΈμ κΆλ°ν μ¬μ μ μ΄μ©νμ¬ λΆλμ°μ μ λ ΄νκ² λ§€μν κ²½μ°.\\n- **μ¬κ±΄λͺ
2**: 맀μν λΆλμ°μ΄ μ€μ λ‘λ κ²½μν μ μλ λ
μ΄μμμ λμ€μ μκ² λ κ²½μ°.\\n\\nμ΄μ κ°μ μ¬λ‘λ₯Ό ν΅ν΄ λ²μ λμ λ°©μμ λͺ¨μν΄λ³΄μκΈ° λ°λλλ€. μΆκ°μ μΈ λ²μ μ‘°μΈμ΄ νμνμλ©΄ λ³νΈμ¬μ μλ΄νμκΈ°λ₯Ό κΆμ₯λ립λλ€.\\n\\nκ°μ¬ν©λλ€.\\n\\n### μΆμ²\\n- 214987, μν΄λ°°μλ±, 68λ€88, 1968.07.30\\n- 153300, 맀맀λκΈλ°νλ±, 66λ€1289, 1966.09.20'"
|
300 |
+
]
|
301 |
+
},
|
302 |
+
"execution_count": 28,
|
303 |
+
"metadata": {},
|
304 |
+
"output_type": "execute_result"
|
305 |
+
}
|
306 |
+
],
|
307 |
+
"source": [
|
308 |
+
"rag_chain(\n",
|
309 |
+
" \"λ
Όλ°μ μ½ 2μ²νμ μλλ°, μκ³ λ³΄λ μ§μ μ§μ μ μλ λ
μ΄μΌ. μ΄λ° μ¬κΈ°μ λΉμ·ν κ±Έ μλ €μ€!\"\n",
|
310 |
+
")"
|
311 |
+
]
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"cell_type": "code",
|
315 |
+
"execution_count": null,
|
316 |
+
"metadata": {},
|
317 |
+
"outputs": [],
|
318 |
+
"source": []
|
319 |
+
}
|
320 |
+
],
|
321 |
+
"metadata": {
|
322 |
+
"kernelspec": {
|
323 |
+
"display_name": "langchain",
|
324 |
+
"language": "python",
|
325 |
+
"name": "python3"
|
326 |
+
},
|
327 |
+
"language_info": {
|
328 |
+
"codemirror_mode": {
|
329 |
+
"name": "ipython",
|
330 |
+
"version": 3
|
331 |
+
},
|
332 |
+
"file_extension": ".py",
|
333 |
+
"mimetype": "text/x-python",
|
334 |
+
"name": "python",
|
335 |
+
"nbconvert_exporter": "python",
|
336 |
+
"pygments_lexer": "ipython3",
|
337 |
+
"version": "3.11.9"
|
338 |
+
}
|
339 |
+
},
|
340 |
+
"nbformat": 4,
|
341 |
+
"nbformat_minor": 2
|
342 |
+
}
|