import re import spacy import tiktoken from lemminflect import getLemma class AdvancedPromptOptimizer: def __init__(self): # For NER, consider using en_core_web_md for better accuracy self.nlp = spacy.load("en_core_web_sm") self.nlp.Defaults.stop_words -= {"not", "no", "never"} self.tokenizer = tiktoken.get_encoding("cl100k_base") self.negation_words = {"not", "no", "never", "without", "except"} def _mask_spans(self, s): masks = {} # triple backticks s, n = re.subn(r"```.*?```", lambda m: masks.setdefault(f"", m.group(0)) or list(masks.keys())[-1], s, flags=re.S) # inline code s = re.sub(r"`[^`]+`", lambda m: masks.setdefault(f"", m.group(0)) or list(masks.keys())[-1], s) # urls s = re.sub(r"https?://\S+", lambda m: masks.setdefault(f"", m.group(0)) or list(masks.keys())[-1], s) # comparators s = re.sub(r"\b(less than|at least|no more than)\b", lambda m: masks.setdefault(f"", m.group(0)) or list(masks.keys())[-1], s, flags=re.I) return s, masks def _unmask_spans(self, s, masks): for k, v in masks.items(): s = s.replace(k, v) return s def optimize(self, prompt: str, aggressiveness: float = 0.7) -> tuple: """Optimize prompt with token counting""" masked_prompt, masks = self._mask_spans(prompt) optimized = self._apply_rules(masked_prompt, aggressiveness) optimized = self._linguistic_optimize(optimized, aggressiveness) optimized = self._unmask_spans(optimized, masks) optimized = re.sub(r"\s+", " ", optimized).strip() try: orig_tokens = len(self.tokenizer.encode(prompt)) new_tokens = len(self.tokenizer.encode(optimized)) except: orig_tokens = len(prompt.split()) new_tokens = len(optimized.split()) return optimized, orig_tokens, new_tokens def _apply_rules(self, text: str, aggressiveness: float) -> str: # Apply safer rules first rules = [ (r"\s{2,}", " ", 0.0), (r"\b(\w+)\s+\1\b", r"\1", 0.0), (r"\b(advantages and disadvantages)\b", "pros/cons", 0.5), (r"\b(in a detailed manner|in a detailed way)\b", "", 0.7), (r"\b(I want to|I need to|I would like to)\b", "", 0.7), (r"\b(for example|e\.g\.|such as|i\.e\.)\b", "e.g.", 0.8), (r"\b(please\s+)?(kindly\s+)?(carefully|very|extremely|really|quite)\b", "", 0.8), (r"\b(can you|could you|would you)\b", "", 0.9), (r"\b(output|provide|give|return)\s+in\s+(JSON|json)\s+format\b", "JSON:", 1.0), ] for pattern, repl, priority in rules: if aggressiveness >= priority: text = re.sub(pattern, repl, text, flags=re.IGNORECASE) return text def _linguistic_optimize(self, text: str, aggressiveness: float) -> str: if not text.strip(): return text doc = self.nlp(text) out = [] for token in doc: # Guard important labels if token.text.lower() in ["deliverables:", "constraints:", "metrics:"] and token.is_sent_start: out.append(token.text) continue if token.pos_ in ("PUNCT", "SPACE"): continue if token.like_num or token.ent_type_ or token.dep_ == "neg" or token.text.lower() in self.negation_words: out.append(token.text) continue if token.pos_ in ("PROPN", "NUM", "NOUN", "ADJ"): out.append(token.text) continue if token.pos_ == "VERB": if aggressiveness >= 0.8: lemma = getLemma(token.text, upos="VERB") or [token.lemma_] out.append(lemma[0]) else: out.append(token.text) continue if token.pos_ in ("ADV", "DET", "PRON"): if aggressiveness < 0.6: out.append(token.text) # else drop continue out.append(token.text) return " ".join(out)