Spaces:
Runtime error
Runtime error
TEST
Browse files
app.py
ADDED
@@ -0,0 +1,451 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify, render_template, send_from_directory
|
2 |
+
from transformers import (
|
3 |
+
AutoModelForSequenceClassification,
|
4 |
+
AutoTokenizer,
|
5 |
+
TFCLIPModel,
|
6 |
+
CLIPProcessor,
|
7 |
+
pipeline,
|
8 |
+
BertTokenizer,
|
9 |
+
BertForSequenceClassification
|
10 |
+
)
|
11 |
+
import cv2
|
12 |
+
import os
|
13 |
+
import subprocess
|
14 |
+
import torch
|
15 |
+
from PIL import Image
|
16 |
+
import numpy as np
|
17 |
+
import base64
|
18 |
+
import uuid
|
19 |
+
from ultralytics import YOLO
|
20 |
+
import tensorflow as tf
|
21 |
+
import logging
|
22 |
+
|
23 |
+
# Configure logging
|
24 |
+
logging.basicConfig(level=logging.INFO)
|
25 |
+
logger = logging.getLogger(__name__)
|
26 |
+
|
27 |
+
app = Flask(__name__)
|
28 |
+
|
29 |
+
# Create directories
|
30 |
+
os.makedirs('save', exist_ok=True)
|
31 |
+
os.makedirs('temp', exist_ok=True)
|
32 |
+
os.makedirs('unsafe_frames', exist_ok=True)
|
33 |
+
os.makedirs('audio', exist_ok=True)
|
34 |
+
os.makedirs('logs', exist_ok=True)
|
35 |
+
os.makedirs('text_output', exist_ok=True)
|
36 |
+
|
37 |
+
print("Loading models...")
|
38 |
+
try:
|
39 |
+
# Load models
|
40 |
+
nudity_model = YOLO("Models/nudenet/320n.pt")
|
41 |
+
|
42 |
+
bert_tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
43 |
+
bert_model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
|
44 |
+
|
45 |
+
profanity_model = AutoModelForSequenceClassification.from_pretrained("unitary/toxic-bert")
|
46 |
+
profanity_tokenizer = AutoTokenizer.from_pretrained("unitary/toxic-bert")
|
47 |
+
|
48 |
+
hate_speech_model = AutoModelForSequenceClassification.from_pretrained("Hate-speech-CNERG/dehatebert-mono-english")
|
49 |
+
hate_speech_tokenizer = AutoTokenizer.from_pretrained("Hate-speech-CNERG/dehatebert-mono-english")
|
50 |
+
|
51 |
+
clip_model = TFCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
52 |
+
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
53 |
+
|
54 |
+
whisper_model = pipeline("automatic-speech-recognition", model="openai/whisper-tiny")
|
55 |
+
|
56 |
+
print("All models loaded successfully")
|
57 |
+
except Exception as e:
|
58 |
+
logger.error(f"Error loading models: {str(e)}")
|
59 |
+
raise
|
60 |
+
|
61 |
+
@app.route("/")
|
62 |
+
def home():
|
63 |
+
return render_template('index.html')
|
64 |
+
|
65 |
+
@app.route("/extract_text", methods=["POST"])
|
66 |
+
def extract_text():
|
67 |
+
try:
|
68 |
+
audio_file = request.form.get('audio_file')
|
69 |
+
if not audio_file:
|
70 |
+
return jsonify({"error": "No audio file specified"}), 400
|
71 |
+
|
72 |
+
audio_path = os.path.join('audio', audio_file)
|
73 |
+
if not os.path.exists(audio_path):
|
74 |
+
return jsonify({"error": "Audio file not found"}), 404
|
75 |
+
|
76 |
+
# Process audio and get text
|
77 |
+
audio_result = process_audio(audio_path)
|
78 |
+
|
79 |
+
if not audio_result['success']:
|
80 |
+
return jsonify({"error": audio_result['error']}), 500
|
81 |
+
|
82 |
+
# Save extracted text
|
83 |
+
text_filename = f"text_{uuid.uuid4().hex}.txt"
|
84 |
+
text_path = os.path.join('text_output', text_filename)
|
85 |
+
|
86 |
+
with open(text_path, 'w', encoding='utf-8') as f:
|
87 |
+
f.write(audio_result['text'])
|
88 |
+
|
89 |
+
# Analyze text content
|
90 |
+
text_analysis = analyze_text_content(audio_result['text'])
|
91 |
+
|
92 |
+
return jsonify({
|
93 |
+
"success": True,
|
94 |
+
"text": audio_result['text'],
|
95 |
+
"text_file": text_filename,
|
96 |
+
"confidence": audio_result['confidence'],
|
97 |
+
"analysis": text_analysis
|
98 |
+
})
|
99 |
+
|
100 |
+
except Exception as e:
|
101 |
+
logger.error(f"Error extracting text: {str(e)}")
|
102 |
+
return jsonify({"error": str(e)}), 500
|
103 |
+
|
104 |
+
@app.route('/audio/<path:filename>')
|
105 |
+
def serve_audio(filename):
|
106 |
+
return send_from_directory('audio', filename)
|
107 |
+
|
108 |
+
@app.route("/upload", methods=["POST"])
|
109 |
+
def upload_file():
|
110 |
+
try:
|
111 |
+
if 'file' not in request.files:
|
112 |
+
return jsonify({"error": "No file uploaded"}), 400
|
113 |
+
|
114 |
+
video = request.files['file']
|
115 |
+
if video.filename == '':
|
116 |
+
return jsonify({"error": "No file selected"}), 400
|
117 |
+
|
118 |
+
video_path = os.path.join('save', video.filename)
|
119 |
+
video.save(video_path)
|
120 |
+
|
121 |
+
try:
|
122 |
+
frames = extract_frames(video_path)
|
123 |
+
results = []
|
124 |
+
|
125 |
+
audio_filename = f"audio_{uuid.uuid4().hex}.wav"
|
126 |
+
audio_path = os.path.join('audio', audio_filename)
|
127 |
+
audio_result = extract_audio(video_path, audio_path)
|
128 |
+
|
129 |
+
if audio_result:
|
130 |
+
audio_text = process_audio(audio_path)
|
131 |
+
text_content = audio_text.get('text', '')
|
132 |
+
|
133 |
+
# Save extracted text
|
134 |
+
if text_content:
|
135 |
+
text_filename = f"text_{uuid.uuid4().hex}.txt"
|
136 |
+
text_path = os.path.join('text_output', text_filename)
|
137 |
+
|
138 |
+
with open(text_path, 'w', encoding='utf-8') as f:
|
139 |
+
f.write(text_content)
|
140 |
+
|
141 |
+
text_analysis = analyze_text_content(text_content)
|
142 |
+
else:
|
143 |
+
text_filename = None
|
144 |
+
text_analysis = None
|
145 |
+
else:
|
146 |
+
text_content = ''
|
147 |
+
text_filename = None
|
148 |
+
text_analysis = None
|
149 |
+
|
150 |
+
batch_size = 15
|
151 |
+
for i in range(0, len(frames), batch_size):
|
152 |
+
batch_frames = frames[i:i + batch_size]
|
153 |
+
result = analyze_batch(batch_frames, text_content)
|
154 |
+
|
155 |
+
if result is None:
|
156 |
+
continue
|
157 |
+
|
158 |
+
results.extend(result)
|
159 |
+
|
160 |
+
# Cleanup frames
|
161 |
+
for frame_data in batch_frames:
|
162 |
+
if frame_data.get('is_inappropriate', False) or frame_data.get('is_harmful', False):
|
163 |
+
unique_filename = f'unsafe_{uuid.uuid4().hex}.png'
|
164 |
+
unsafe_frame_path = os.path.join('unsafe_frames', unique_filename)
|
165 |
+
os.rename(frame_data['frame'], unsafe_frame_path)
|
166 |
+
else:
|
167 |
+
os.remove(frame_data['frame'])
|
168 |
+
os.remove(frame_data['thumbnail'])
|
169 |
+
|
170 |
+
if os.path.exists(video_path):
|
171 |
+
os.remove(video_path)
|
172 |
+
|
173 |
+
if results:
|
174 |
+
total_meta_score = sum(r['meta_standards']['score'] for r in results) / len(results)
|
175 |
+
overall_assessment = {
|
176 |
+
"total_score": total_meta_score,
|
177 |
+
"risk_level": "High" if total_meta_score > 35 else "Medium" if total_meta_score > 30 else "Low",
|
178 |
+
"recommendation": get_recommendation(total_meta_score)
|
179 |
+
}
|
180 |
+
else:
|
181 |
+
overall_assessment = {
|
182 |
+
"total_score": 0,
|
183 |
+
"risk_level": "Low",
|
184 |
+
"recommendation": "No issues detected"
|
185 |
+
}
|
186 |
+
|
187 |
+
return jsonify({
|
188 |
+
"success": True,
|
189 |
+
"results": results,
|
190 |
+
"audio_path": audio_filename,
|
191 |
+
"audio_text": text_content,
|
192 |
+
"text_file": text_filename,
|
193 |
+
"text_analysis": text_analysis,
|
194 |
+
"overall_assessment": overall_assessment
|
195 |
+
})
|
196 |
+
|
197 |
+
except Exception as e:
|
198 |
+
if os.path.exists(video_path):
|
199 |
+
os.remove(video_path)
|
200 |
+
logger.error(f"Error in content analysis: {str(e)}")
|
201 |
+
return jsonify({"error": str(e)}), 500
|
202 |
+
|
203 |
+
except Exception as e:
|
204 |
+
logger.error(f"Error in upload: {str(e)}")
|
205 |
+
return jsonify({"error": str(e)}), 500
|
206 |
+
|
207 |
+
def extract_frames(video_path):
|
208 |
+
cap = cv2.VideoCapture(video_path)
|
209 |
+
if not cap.isOpened():
|
210 |
+
raise Exception("Error opening video file")
|
211 |
+
|
212 |
+
frames = []
|
213 |
+
frame_count = 0
|
214 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
215 |
+
|
216 |
+
while cap.isOpened():
|
217 |
+
ret, frame = cap.read()
|
218 |
+
if not ret:
|
219 |
+
break
|
220 |
+
|
221 |
+
if frame_count % fps == 0:
|
222 |
+
frame_path = os.path.join('temp', f'frame_{frame_count}.jpg')
|
223 |
+
thumbnail_path = os.path.join('temp', f'thumb_{frame_count}.jpg')
|
224 |
+
|
225 |
+
cv2.imwrite(frame_path, frame)
|
226 |
+
thumbnail = cv2.resize(frame, (648, 648))
|
227 |
+
cv2.imwrite(thumbnail_path, thumbnail)
|
228 |
+
|
229 |
+
frames.append({
|
230 |
+
'frame': frame_path,
|
231 |
+
'thumbnail': thumbnail_path,
|
232 |
+
'timestamp': frame_count // fps
|
233 |
+
})
|
234 |
+
frame_count += 1
|
235 |
+
|
236 |
+
cap.release()
|
237 |
+
return frames
|
238 |
+
|
239 |
+
def extract_audio(video_path, output_path):
|
240 |
+
try:
|
241 |
+
command = [
|
242 |
+
'ffmpeg',
|
243 |
+
'-i', video_path,
|
244 |
+
'-vn',
|
245 |
+
'-acodec', 'pcm_s16le',
|
246 |
+
'-ar', '16000',
|
247 |
+
'-ac', '1',
|
248 |
+
'-y',
|
249 |
+
output_path
|
250 |
+
]
|
251 |
+
|
252 |
+
result = subprocess.run(
|
253 |
+
command,
|
254 |
+
check=True,
|
255 |
+
stderr=subprocess.PIPE,
|
256 |
+
stdout=subprocess.PIPE
|
257 |
+
)
|
258 |
+
|
259 |
+
if os.path.exists(output_path) and os.path.getsize(output_path) > 0:
|
260 |
+
logger.info(f"Audio extracted successfully: {output_path}")
|
261 |
+
return output_path
|
262 |
+
else:
|
263 |
+
raise Exception("Audio extraction failed - empty or missing file")
|
264 |
+
|
265 |
+
except Exception as e:
|
266 |
+
logger.error(f"Audio extraction error: {str(e)}")
|
267 |
+
return None
|
268 |
+
|
269 |
+
def process_audio(audio_path):
|
270 |
+
try:
|
271 |
+
if not os.path.exists(audio_path):
|
272 |
+
logger.error(f"Audio file not found: {audio_path}")
|
273 |
+
return {
|
274 |
+
'success': False,
|
275 |
+
'text': "Audio file not found",
|
276 |
+
'error': "File not found"
|
277 |
+
}
|
278 |
+
|
279 |
+
logger.info(f"Processing audio file: {audio_path}")
|
280 |
+
|
281 |
+
# First pass with Whisper
|
282 |
+
whisper_result = whisper_model(audio_path)
|
283 |
+
|
284 |
+
logger.info(f"Whisper result: {whisper_result}")
|
285 |
+
|
286 |
+
if not whisper_result.get('text'):
|
287 |
+
logger.error("Whisper failed to extract text")
|
288 |
+
return {
|
289 |
+
'success': False,
|
290 |
+
'text': "Whisper failed to extract text",
|
291 |
+
'error': "No text found in Whisper output"
|
292 |
+
}
|
293 |
+
|
294 |
+
text = whisper_result['text']
|
295 |
+
|
296 |
+
# Second pass with BERT
|
297 |
+
chunks = [text[i:i+512] for i in range(0, len(text), 512)]
|
298 |
+
processed_chunks = []
|
299 |
+
|
300 |
+
for chunk in chunks:
|
301 |
+
inputs = bert_tokenizer(chunk, return_tensors="pt", truncation=True, max_length=512)
|
302 |
+
with torch.no_grad():
|
303 |
+
outputs = bert_model(**inputs)
|
304 |
+
|
305 |
+
processed_chunk = bert_tokenizer.decode(
|
306 |
+
inputs['input_ids'][0],
|
307 |
+
skip_special_tokens=True
|
308 |
+
)
|
309 |
+
processed_chunks.append(processed_chunk)
|
310 |
+
|
311 |
+
final_text = " ".join(processed_chunks)
|
312 |
+
|
313 |
+
return {
|
314 |
+
'success': True,
|
315 |
+
'text': final_text,
|
316 |
+
'confidence': whisper_result.get('confidence', 0)
|
317 |
+
}
|
318 |
+
|
319 |
+
except Exception as e:
|
320 |
+
logger.error(f"Audio processing error: {str(e)}")
|
321 |
+
return {
|
322 |
+
'success': False,
|
323 |
+
'text': "Audio processing failed",
|
324 |
+
'error': str(e)
|
325 |
+
}
|
326 |
+
|
327 |
+
def analyze_text_content(text):
|
328 |
+
try:
|
329 |
+
# Analyze profanity
|
330 |
+
profanity_inputs = profanity_tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
331 |
+
with torch.no_grad():
|
332 |
+
profanity_outputs = profanity_model(**profanity_inputs)
|
333 |
+
profanity_scores = torch.nn.functional.softmax(profanity_outputs.logits, dim=-1)
|
334 |
+
|
335 |
+
# Analyze hate speech
|
336 |
+
hate_speech_inputs = hate_speech_tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
337 |
+
with torch.no_grad():
|
338 |
+
hate_speech_outputs = hate_speech_model(**hate_speech_inputs)
|
339 |
+
hate_speech_scores = torch.nn.functional.softmax(hate_speech_outputs.logits, dim=-1)
|
340 |
+
|
341 |
+
return {
|
342 |
+
"profanity": {
|
343 |
+
"score": float(profanity_scores[0][1]) * 100,
|
344 |
+
"is_offensive": float(profanity_scores[0][1]) > 0.5
|
345 |
+
},
|
346 |
+
"hate_speech": {
|
347 |
+
"score": float(hate_speech_scores[0][1]) * 100,
|
348 |
+
"is_hateful": float(hate_speech_scores[0][1]) > 0.5
|
349 |
+
}
|
350 |
+
}
|
351 |
+
except Exception as e:
|
352 |
+
logger.error(f"Error analyzing text: {str(e)}")
|
353 |
+
return None
|
354 |
+
|
355 |
+
def analyze_batch(batch_frames, text):
|
356 |
+
try:
|
357 |
+
results = []
|
358 |
+
images = []
|
359 |
+
timestamps = []
|
360 |
+
|
361 |
+
for frame_data in batch_frames:
|
362 |
+
image = Image.open(frame_data['frame'])
|
363 |
+
image = image.resize((128, 128))
|
364 |
+
images.append(image)
|
365 |
+
timestamps.append(frame_data['timestamp'])
|
366 |
+
|
367 |
+
# Prepare image data
|
368 |
+
image_arrays = np.array([np.array(img) / 255.0 for img in images])
|
369 |
+
image_tensors = torch.tensor(image_arrays).permute(0, 3, 1, 2).float()
|
370 |
+
|
371 |
+
# Run analyses
|
372 |
+
with torch.no_grad():
|
373 |
+
nudity_results = nudity_model(image_tensors)
|
374 |
+
nudity_predictions = [result.boxes for result in nudity_results]
|
375 |
+
|
376 |
+
if text:
|
377 |
+
profanity_inputs = profanity_tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
378 |
+
with torch.no_grad():
|
379 |
+
profanity_outputs = profanity_model(**profanity_inputs)
|
380 |
+
profanity_scores = torch.nn.functional.softmax(profanity_outputs.logits, dim=-1)
|
381 |
+
|
382 |
+
hate_speech_inputs = hate_speech_tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
383 |
+
with torch.no_grad():
|
384 |
+
hate_speech_outputs = hate_speech_model(**hate_speech_inputs)
|
385 |
+
hate_speech_scores = torch.nn.functional.softmax(hate_speech_outputs.logits, dim=-1)
|
386 |
+
else:
|
387 |
+
profanity_scores = torch.zeros(1, 2)
|
388 |
+
hate_speech_scores = torch.zeros(1, 2)
|
389 |
+
|
390 |
+
clip_inputs = clip_processor(text=[text if text else ""] * len(images), images=images, return_tensors="tf", padding=True)
|
391 |
+
clip_outputs = clip_model(**clip_inputs)
|
392 |
+
clip_scores = tf.nn.softmax(clip_outputs.logits_per_image, axis=-1).numpy()
|
393 |
+
|
394 |
+
for i in range(len(batch_frames)):
|
395 |
+
with open(batch_frames[i]['thumbnail'], 'rb') as img_file:
|
396 |
+
thumbnail_base64 = base64.b64encode(img_file.read()).decode('utf-8')
|
397 |
+
|
398 |
+
nudity_score = float(nudity_predictions[i].conf[0]) * 99 if nudity_predictions[i] else 0.0
|
399 |
+
profanity_score = float(profanity_scores[0][1]) * 99
|
400 |
+
hate_speech_score = float(hate_speech_scores[0][1]) * 99
|
401 |
+
harm_score = float(clip_scores[i][1]) * 99 if clip_scores[i].size > 1 else 0.0
|
402 |
+
|
403 |
+
meta_standards_score = (
|
404 |
+
(nudity_score * 0.6) +
|
405 |
+
(hate_speech_score * 0.1) +
|
406 |
+
(harm_score * 0.1) +
|
407 |
+
(profanity_score * 0.1)
|
408 |
+
)
|
409 |
+
|
410 |
+
results.append({
|
411 |
+
"nudity": {
|
412 |
+
"score": nudity_score,
|
413 |
+
"is_inappropriate": nudity_score > 65
|
414 |
+
},
|
415 |
+
"profanity": {
|
416 |
+
"score": profanity_score,
|
417 |
+
"is_offensive": profanity_score > 65
|
418 |
+
},
|
419 |
+
"hate_speech": {
|
420 |
+
"score": hate_speech_score,
|
421 |
+
"is_hateful": hate_speech_score > 40
|
422 |
+
},
|
423 |
+
"harm": {
|
424 |
+
"score": harm_score,
|
425 |
+
"is_harmful": harm_score > 40
|
426 |
+
},
|
427 |
+
"meta_standards": {
|
428 |
+
"score": meta_standards_score,
|
429 |
+
"is_violating": meta_standards_score > 30,
|
430 |
+
"risk_level": "High" if meta_standards_score > 60 else "Medium" if meta_standards_score > 25 else "Low",
|
431 |
+
"recommendation": get_recommendation(meta_standards_score)
|
432 |
+
},
|
433 |
+
"thumbnail": thumbnail_base64,
|
434 |
+
"timestamp": timestamps[i]
|
435 |
+
})
|
436 |
+
|
437 |
+
return results
|
438 |
+
except Exception as e:
|
439 |
+
logger.error(f"Error in batch analysis: {str(e)}")
|
440 |
+
return None
|
441 |
+
|
442 |
+
def get_recommendation(score):
|
443 |
+
if score > 70:
|
444 |
+
return "Content likely violates Meta Community Standards. Major modifications needed."
|
445 |
+
elif score > 30:
|
446 |
+
return "Content may need modifications to comply with Meta Community Standards."
|
447 |
+
else:
|
448 |
+
return "Content likely complies with Meta Community Standards."
|
449 |
+
|
450 |
+
if __name__ == "__main__":
|
451 |
+
app.run(host="0.0.0.0", port=5000, debug=True)
|