Spaces:
Sleeping
Sleeping
Update
Browse files
app.py
CHANGED
@@ -34,7 +34,7 @@ async def ask_api(request: AskRequest):
|
|
34 |
documents = faq.similarity_search(vectordb, request.question, k=request.k)
|
35 |
df_doc = util.transform_documents_to_dataframe(documents)
|
36 |
df_filter = util.remove_duplicates_by_column(df_doc, "ID")
|
37 |
-
return util.
|
38 |
|
39 |
|
40 |
@app.delete("/api/v1/")
|
|
|
34 |
documents = faq.similarity_search(vectordb, request.question, k=request.k)
|
35 |
df_doc = util.transform_documents_to_dataframe(documents)
|
36 |
df_filter = util.remove_duplicates_by_column(df_doc, "ID")
|
37 |
+
return util.dataframe_to_dict(df_filter)
|
38 |
|
39 |
|
40 |
@app.delete("/api/v1/")
|
faq.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import pandas as pd
|
2 |
from langchain.document_loaders import DataFrameLoader
|
3 |
from langchain.embeddings import HuggingFaceEmbeddings
|
@@ -10,30 +11,12 @@ import os
|
|
10 |
import shutil
|
11 |
from enum import Enum
|
12 |
|
13 |
-
SHEET_URL_X = "https://docs.google.com/spreadsheets/d/"
|
14 |
-
SHEET_URL_Y = "/edit#gid="
|
15 |
-
SHEET_URL_Y_EXPORT = "/export?gid="
|
16 |
EMBEDDING_MODEL_FOLDER = ".embedding-model"
|
17 |
VECTORDB_FOLDER = ".vectordb"
|
18 |
EMBEDDING_MODEL = "sentence-transformers/all-mpnet-base-v2"
|
19 |
VECTORDB_TYPE = Enum("VECTORDB_TYPE", ["AwaDB", "Chroma"])
|
20 |
|
21 |
|
22 |
-
def faq_id(sheet_url: str) -> str:
|
23 |
-
x = sheet_url.find(SHEET_URL_X)
|
24 |
-
y = sheet_url.find(SHEET_URL_Y)
|
25 |
-
return sheet_url[x + len(SHEET_URL_X) : y] + "-" + sheet_url[y + len(SHEET_URL_Y) :]
|
26 |
-
|
27 |
-
|
28 |
-
def xlsx_url(faq_id: str) -> str:
|
29 |
-
y = faq_id.rfind("-")
|
30 |
-
return SHEET_URL_X + faq_id[0:y] + SHEET_URL_Y_EXPORT + faq_id[y + 1 :]
|
31 |
-
|
32 |
-
|
33 |
-
def read_df(xlsx_url: str) -> pd.DataFrame:
|
34 |
-
return pd.read_excel(xlsx_url, header=0, keep_default_na=False)
|
35 |
-
|
36 |
-
|
37 |
def create_documents(df: pd.DataFrame, page_content_column: str) -> pd.DataFrame:
|
38 |
loader = DataFrameLoader(df, page_content_column=page_content_column)
|
39 |
return loader.load()
|
@@ -109,7 +92,7 @@ def create_vectordb_id(
|
|
109 |
if embedding_function is None:
|
110 |
embedding_function = define_embedding_function(EMBEDDING_MODEL)
|
111 |
|
112 |
-
df = read_df(xlsx_url(faq_id))
|
113 |
documents = create_documents(df, page_content_column)
|
114 |
vectordb = get_vectordb(
|
115 |
faq_id=faq_id, embedding_function=embedding_function, documents=documents
|
@@ -118,7 +101,7 @@ def create_vectordb_id(
|
|
118 |
|
119 |
|
120 |
def load_vectordb(sheet_url: str, page_content_column: str) -> VectorStore:
|
121 |
-
return load_vectordb_id(
|
122 |
|
123 |
|
124 |
def delete_vectordb():
|
|
|
1 |
+
import util as util
|
2 |
import pandas as pd
|
3 |
from langchain.document_loaders import DataFrameLoader
|
4 |
from langchain.embeddings import HuggingFaceEmbeddings
|
|
|
11 |
import shutil
|
12 |
from enum import Enum
|
13 |
|
|
|
|
|
|
|
14 |
EMBEDDING_MODEL_FOLDER = ".embedding-model"
|
15 |
VECTORDB_FOLDER = ".vectordb"
|
16 |
EMBEDDING_MODEL = "sentence-transformers/all-mpnet-base-v2"
|
17 |
VECTORDB_TYPE = Enum("VECTORDB_TYPE", ["AwaDB", "Chroma"])
|
18 |
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def create_documents(df: pd.DataFrame, page_content_column: str) -> pd.DataFrame:
|
21 |
loader = DataFrameLoader(df, page_content_column=page_content_column)
|
22 |
return loader.load()
|
|
|
92 |
if embedding_function is None:
|
93 |
embedding_function = define_embedding_function(EMBEDDING_MODEL)
|
94 |
|
95 |
+
df = util.read_df(util.xlsx_url(faq_id))
|
96 |
documents = create_documents(df, page_content_column)
|
97 |
vectordb = get_vectordb(
|
98 |
faq_id=faq_id, embedding_function=embedding_function, documents=documents
|
|
|
101 |
|
102 |
|
103 |
def load_vectordb(sheet_url: str, page_content_column: str) -> VectorStore:
|
104 |
+
return load_vectordb_id(util.get_id(sheet_url), page_content_column)
|
105 |
|
106 |
|
107 |
def delete_vectordb():
|
util.py
CHANGED
@@ -1,5 +1,25 @@
|
|
1 |
import pandas as pd
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
def split_page_breaks(df, column_name):
|
4 |
split_values = df[column_name].str.split("\n")
|
5 |
|
@@ -43,7 +63,7 @@ def remove_duplicates_by_column(df, column):
|
|
43 |
return df
|
44 |
|
45 |
|
46 |
-
def
|
47 |
-
|
48 |
|
49 |
-
return
|
|
|
1 |
import pandas as pd
|
2 |
|
3 |
+
SHEET_URL_X = "https://docs.google.com/spreadsheets/d/"
|
4 |
+
SHEET_URL_Y = "/edit#gid="
|
5 |
+
SHEET_URL_Y_EXPORT = "/export?gid="
|
6 |
+
|
7 |
+
|
8 |
+
def get_id(sheet_url: str) -> str:
|
9 |
+
x = sheet_url.find(SHEET_URL_X)
|
10 |
+
y = sheet_url.find(SHEET_URL_Y)
|
11 |
+
return sheet_url[x + len(SHEET_URL_X) : y] + "-" + sheet_url[y + len(SHEET_URL_Y) :]
|
12 |
+
|
13 |
+
|
14 |
+
def xlsx_url(get_id: str) -> str:
|
15 |
+
y = get_id.rfind("-")
|
16 |
+
return SHEET_URL_X + get_id[0:y] + SHEET_URL_Y_EXPORT + get_id[y + 1 :]
|
17 |
+
|
18 |
+
|
19 |
+
def read_df(xlsx_url: str) -> pd.DataFrame:
|
20 |
+
return pd.read_excel(xlsx_url, header=0, keep_default_na=False)
|
21 |
+
|
22 |
+
|
23 |
def split_page_breaks(df, column_name):
|
24 |
split_values = df[column_name].str.split("\n")
|
25 |
|
|
|
63 |
return df
|
64 |
|
65 |
|
66 |
+
def dataframe_to_dict(df):
|
67 |
+
df_records = df.to_dict(orient='records')
|
68 |
|
69 |
+
return df_records
|