Spaces:
Sleeping
Sleeping
import pandas as pd | |
from langchain.document_loaders import DataFrameLoader | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import AwaDB | |
from typing import List, Tuple | |
from langchain.docstore.document import Document | |
from langchain.embeddings.base import Embeddings | |
from langchain.vectorstores.base import VectorStore | |
import os | |
sheet_url_x = "https://docs.google.com/spreadsheets/d/" | |
sheet_url_y = "/edit#gid=" | |
sheet_url_y_exp = "/export?gid=" | |
cache_folder=".embedding-model" | |
dir_vectordb = ".vectordb" | |
def faq_id(sheet_url: str) -> str: | |
x = sheet_url.find(sheet_url_x) | |
y = sheet_url.find(sheet_url_y) | |
return sheet_url[x + len(sheet_url_x) : y] + "-" + sheet_url[y + len(sheet_url_y) :] | |
def xlsx_url(sheet_url: str) -> str: | |
return sheet_url.replace(sheet_url_y, sheet_url_y_exp) | |
def xlsx_url_faq_id(faq_id: str) -> str: | |
y = faq_id.rfind("-") | |
return sheet_url_x + faq_id[0:y] + sheet_url_y_exp + faq_id[y + 1 :] | |
def read_df(xlsx_url: str) -> pd.DataFrame: | |
return pd.read_excel(xlsx_url, header=0, keep_default_na=False) | |
def create_documents(df: pd.DataFrame, page_content_column: str) -> pd.DataFrame: | |
loader = DataFrameLoader(df, page_content_column=page_content_column) | |
return loader.load() | |
def embedding_function(model_name: str) -> HuggingFaceEmbeddings: | |
return HuggingFaceEmbeddings( | |
model_name=model_name, | |
encode_kwargs={"normalize_embeddings": True}, | |
cache_folder=cache_folder | |
) | |
def vectordb( | |
faq_id: str, | |
documents: List[Document], | |
embedding_function: Embeddings, | |
init: bool = False, | |
) -> VectorStore: | |
vectordb = None | |
if init: | |
vectordb = AwaDB.from_documents( | |
documents=documents, | |
embedding=embedding_function, | |
table_name=faq_id, | |
log_and_data_dir=dir_vectordb | |
) | |
else: | |
vectordb = AwaDB( | |
embedding=embedding_function, | |
log_and_data_dir=dir_vectordb | |
) | |
vectordb.load_local(table_name=faq_id) | |
return vectordb | |
def similarity_search(vectordb: VectorStore, query: str, k: int) -> List[Tuple[Document, float]]: | |
os.environ["TOKENIZERS_PARALLELISM"] = "true" | |
return vectordb.similarity_search_with_relevance_scores(query=query, k=k) |