Spaces:
Sleeping
Sleeping
from fastapi import FastAPI | |
from pydantic import BaseModel | |
import faq as faq | |
import util as util | |
import uvicorn | |
import gradio as gr | |
app = FastAPI() | |
class AskRequest(BaseModel): | |
question: str | |
sheet_url: str | |
page_content_column: str | |
k: int | |
async def ask_api(request: AskRequest): | |
return ask( | |
request.sheet_url, request.page_content_column, request.k, request.question | |
) | |
async def ask_api(request: AskRequest): | |
faq_id = faq.faq_id(request.sheet_url) | |
xlsx_url = faq.xlsx_url(faq_id) | |
df = faq.read_df(xlsx_url) | |
df_update = util.split_page_breaks(df, request.page_content_column) | |
documents = faq.create_documents(df_update, request.page_content_column) | |
embedding_function = faq.define_embedding_function("sentence-transformers/all-mpnet-base-v2") | |
vectordb = faq.get_vectordb(faq_id=faq_id, embedding_function=embedding_function, documents=documents, vectordb_type=faq.VECTORDB_TYPE.Chroma) | |
documents = faq.similarity_search(vectordb, request.question, k=request.k) | |
df_doc = util.transform_documents_to_dataframe(documents) | |
df_filter = util.remove_duplicates_by_column(df_doc, "ID") | |
return util.serialize_dataframe_as_json(df_filter) | |
async def delete_vectordb_api(): | |
return delete_vectordb() | |
def ask(sheet_url: str, page_content_column: str, k: int, question: str): | |
vectordb = faq.load_vectordb(sheet_url, page_content_column) | |
result = faq.similarity_search(vectordb, question, k=k) | |
return result | |
def delete_vectordb(): | |
faq.delete_vectordb() | |
with gr.Blocks() as block: | |
sheet_url = gr.Textbox(label="Google Sheet URL") | |
page_content_column = gr.Textbox(label="Question Column") | |
k = gr.Slider(2, 5, step=1, label="K") | |
question = gr.Textbox(label="Question") | |
ask_button = gr.Button("Ask") | |
answer_output = gr.JSON(label="Answer") | |
delete_button = gr.Button("Delete Vector DB") | |
ask_button.click( | |
ask, | |
inputs=[sheet_url, page_content_column, k, question], | |
outputs=answer_output, | |
) | |
delete_button.click(delete_vectordb) | |
app = gr.mount_gradio_app(app, block, path="/") | |
if __name__ == "__main__": | |
uvicorn.run(app, host="0.0.0.0", port=7860) | |