File size: 5,594 Bytes
a403ce3 2ce4cd6 a403ce3 2ce4cd6 a403ce3 2ce4cd6 a403ce3 2ce4cd6 a403ce3 2ce4cd6 a403ce3 0eb2b65 2ce4cd6 a403ce3 0eb2b65 a403ce3 2ce4cd6 a403ce3 0eb2b65 a403ce3 2ce4cd6 a403ce3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import streamlit as st
import pickle
import tensorflow as tf
from tensorflow.keras.preprocessing import sequence
from tensorflow.keras.saving import load_model
import numpy as np
from PIL import Image
st.title('Classifier System')
task = st.selectbox('Select Task', ['Choose one','Sentiment Classification', 'Tumor Detection'])
if task=='Tumor Detection':
st.subheader('Tumor Detection with CNN')
# CNN
#with open(r"E:\DUK\DUKSEM3\DEEP_LEARNING\ASSIGN1\Multi-Modal_classifier_Image_Classification_Sentiment_Sentiment_Analysis\CNN\cnn_model.pkl",'rb') as file:
#cnn_model = pickle.load(file)
cnn_model = load_model("cnn_model1.h5")
img = st.file_uploader('Upload image', type=['jpeg', 'jpg', 'png'])
def cnn_make_prediction(img,model):
img=Image.open(img)
img=img.resize((128,128))
img=np.array(img)
input_img = np.expand_dims(img, axis=0)
res = model.predict(input_img)
if res:
return "Tumor Detected"
else:
return "No Tumor Detected"
if img is not None:
st.image(img, caption = "Image preview")
if st.button('Submit'):
pred = cnn_make_prediction(img, cnn_model)
st.write(pred)
if task=='Sentiment Classification':
arcs = ['Perceptron', 'Backpropagation', 'DNN', 'RNN', 'LSTM']
arc = st.radio('Pick one:', arcs, horizontal=True)
if arc == arcs[0]:
# Perceptron
with open("pnn_model.pkl",'rb') as file:
perceptron = pickle.load(file)
with open("pnn_tokeniser.pkl",'rb') as file:
ppn_tokeniser = pickle.load(file)
def ppn_make_predictions(inp, model):
encoded_inp = ppn_tokeniser.texts_to_sequences([inp])
padded_inp = sequence.pad_sequences(encoded_inp, maxlen=500)
res = model.predict(padded_inp)
if res:
return "Not spam"
else:
return "Spam"
st.subheader('SMS spam Classification using Perceptron')
inp = st.text_area('Enter message')
if st.button('Check'):
pred = ppn_make_predictions([inp], perceptron)
st.write(pred)
elif arc == arcs[1]:
# BackPropogation
with open("bpn_model.pkl",'rb') as file:
backprop = pickle.load(file)
with open("bpn_tokeniser.pkl",'rb') as file:
bp_tokeniser = pickle.load(file)
def bp_make_predictions(inp, model):
encoded_inp = bp_tokeniser.texts_to_sequences([inp])
padded_inp = sequence.pad_sequences(encoded_inp, maxlen=500)
res = model.predict(padded_inp)
if res:
return "Not spam"
else:
return "Spam"
st.subheader('SMS spam Classification using Backpropagation')
inp = st.text_area('Enter message')
if st.button('Check'):
pred = bp_make_predictions([inp], backprop)
st.write(pred)
elif arc == arcs[2]:
# DNN
dnn_model = load_model("dnn_model1.h5")
#with open("dnn_model.pkl",'rb') as file:
#dnn_model = pickle.load(file)
with open("dnn_tokeniser.pkl",'rb') as file:
dnn_tokeniser = pickle.load(file)
def dnn_make_predictions(inp, model):
inp = dnn_tokeniser.texts_to_sequences(inp)
inp = sequence.pad_sequences(inp, maxlen=500)
res = (model.predict(inp) > 0.5).astype("int32")
if res:
return "Not spam"
else:
return "Spam"
st.subheader('SMS spam Classification using DNN')
inp = st.text_area('Enter message')
if st.button('Check'):
pred = dnn_make_predictions([inp], dnn_model)
st.write(pred)
elif arc == arcs[3]:
# RNN
#with open("rnn_model.pkl",'rb') as file:
#rnn_model = pickle.load(file)
rnn_model = load_model("rnn_model1.h5")
with open("rnn_tokeniser.pkl",'rb') as file:
rnn_tokeniser = pickle.load(file)
def rnn_make_predictions(inp, model):
encoded_inp = rnn_tokeniser.texts_to_sequences(inp)
padded_inp = sequence.pad_sequences(encoded_inp, maxlen=10, padding='post')
res = (model.predict(padded_inp) > 0.5).astype("int32")
if res:
return "Spam"
else:
return "Not spam"
st.subheader('SMS Spam Classification using RNN')
inp = st.text_area('Enter message')
if st.button('Check'):
pred = rnn_make_predictions([inp], rnn_model)
st.write(pred)
elif arc == arcs[4]:
# LSTM
#with open("lstm_model.pkl",'rb') as file:
#lstm_model = pickle.load(file)
lstm_model = load_model("lstm_model1.h5")
with open("lstm_tokeniser.pkl",'rb') as file:
lstm_tokeniser = pickle.load(file)
def lstm_make_predictions(inp, model):
inp = lstm_tokeniser.texts_to_sequences(inp)
inp = sequence.pad_sequences(inp, maxlen=500)
res = (model.predict(inp) > 0.5).astype("int32")
if res:
return "Not spam"
else:
return "Spam"
st.subheader('SMS spam Classification using LSTM')
inp = st.text_area('Enter message')
if st.button('Check'):
pred = lstm_make_predictions([inp], lstm_model)
st.write(pred) |