Spaces:
Sleeping
Sleeping
| import os | |
| from threading import Thread | |
| from typing import Iterator | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
| import subprocess | |
| subprocess.run( | |
| "pip install flash-attn --no-build-isolation", | |
| env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, | |
| shell=True, | |
| ) | |
| DESCRIPTION = """\ | |
| # Phi 3.5 mini ITA ๐ฌ ๐ฎ๐น | |
| Fine-tuned version of Microsoft/Phi-3.5-mini-instruct to improve the performance on the Italian language. | |
| Small (3.82 B parameters) but capable model, with 128k context length. | |
| [๐ชช **Model card**](https://huggingface.co/anakin87/Phi-3.5-mini-ITA) | |
| """ | |
| MAX_MAX_NEW_TOKENS = 2048 | |
| DEFAULT_MAX_NEW_TOKENS = 1024 | |
| MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| model_id = "anakin87/Phi-3.5-mini-ITA" | |
| tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True,) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_id, | |
| device_map="auto", | |
| torch_dtype=torch.bfloat16, | |
| attn_implementation="flash_attention_2", | |
| trust_remote_code=True, | |
| ) | |
| model.config.sliding_window = 4096 | |
| model.eval() | |
| def generate( | |
| message: str, | |
| chat_history: list[tuple[str, str]], | |
| system_message: str = "", | |
| max_new_tokens: int = 1024, | |
| temperature: float = 0.001, | |
| top_p: float = 1.0, | |
| top_k: int = 50, | |
| repetition_penalty: float = 1.0, | |
| ) -> Iterator[str]: | |
| conversation = [{"role": "system", "content": system_message}] | |
| for user, assistant in chat_history: | |
| conversation.extend( | |
| [ | |
| {"role": "user", "content": user}, | |
| {"role": "assistant", "content": assistant}, | |
| ] | |
| ) | |
| conversation.append({"role": "user", "content": message}) | |
| input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") | |
| if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
| input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
| gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
| input_ids = input_ids.to(model.device) | |
| streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
| generate_kwargs = dict( | |
| {"input_ids": input_ids}, | |
| streamer=streamer, | |
| max_new_tokens=max_new_tokens, | |
| do_sample=True, | |
| top_p=top_p, | |
| top_k=top_k, | |
| temperature=temperature, | |
| num_beams=1, | |
| repetition_penalty=repetition_penalty, | |
| ) | |
| t = Thread(target=model.generate, kwargs=generate_kwargs) | |
| t.start() | |
| outputs = [] | |
| for text in streamer: | |
| outputs.append(text) | |
| yield "".join(outputs) | |
| chat_interface = gr.ChatInterface( | |
| fn=generate, | |
| additional_inputs=[ | |
| gr.Textbox( | |
| value="", | |
| label="System message", | |
| render=False, | |
| ), | |
| gr.Slider( | |
| label="Max new tokens", | |
| minimum=1, | |
| maximum=MAX_MAX_NEW_TOKENS, | |
| step=1, | |
| value=DEFAULT_MAX_NEW_TOKENS, | |
| ), | |
| gr.Slider( | |
| label="Temperature", | |
| minimum=0, | |
| maximum=4.0, | |
| step=0.1, | |
| value=0.001, | |
| ), | |
| gr.Slider( | |
| label="Top-p (nucleus sampling)", | |
| minimum=0.05, | |
| maximum=1.0, | |
| step=0.05, | |
| value=1.0, | |
| ), | |
| gr.Slider( | |
| label="Top-k", | |
| minimum=1, | |
| maximum=1000, | |
| step=1, | |
| value=50, | |
| ), | |
| gr.Slider( | |
| label="Repetition penalty", | |
| minimum=1.0, | |
| maximum=2.0, | |
| step=0.05, | |
| value=1.0, | |
| ), | |
| ], | |
| stop_btn=None, | |
| examples=[ | |
| ["Ciao! Come stai?"], | |
| ["Pro e contro di una relazione a lungo termine. Elenco puntato con max 3 pro e 3 contro sintetici."], | |
| ["Quante ore impiega un uomo per mangiare un elicottero?"], | |
| ["Come si apre un file JSON in Python?"], | |
| ["Fammi un elenco puntato dei pro e contro di vivere in Italia. Massimo 2 pro e 2 contro."], | |
| ["Inventa una breve storia con animali sul valore dell'amicizia."], | |
| ["Scrivi un articolo di 100 parole sui 'Benefici dell'open-source nella ricerca sull'intelligenza artificiale'"], | |
| ["Can you explain briefly to me what is the Python programming language?"], | |
| ["How many hours does it take a man to eat a Helicopter?"], | |
| ["Write a 100-word article on 'Benefits of Open-Source in AI research'"], | |
| ], | |
| cache_examples=False, | |
| ) | |
| with gr.Blocks(css="style.css", fill_height=True, theme="soft") as demo: | |
| gr.Markdown(DESCRIPTION) | |
| gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") | |
| chat_interface.render() | |
| if __name__ == "__main__": | |
| demo.queue(max_size=20).launch() | |