Added gradio
Browse files- .gitignore +1 -1
- app.py +31 -0
- requirements.txt +3 -1
- src/.env +0 -1
- src/__init__.py +0 -0
- src/chains.py +50 -0
- src/clients.py +51 -0
- src/complex.ipynb +256 -0
.gitignore
CHANGED
|
@@ -1,2 +1,2 @@
|
|
| 1 |
-
|
| 2 |
.idea/
|
|
|
|
| 1 |
+
.env
|
| 2 |
.idea/
|
app.py
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from dotenv import load_dotenv
|
| 3 |
+
from src.clients import AcademicClient
|
| 4 |
+
|
| 5 |
+
load_dotenv()
|
| 6 |
+
client = AcademicClient()
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def perform_qa(query):
|
| 10 |
+
return client.answer(query)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
css = """
|
| 14 |
+
body {
|
| 15 |
+
text-align: center;
|
| 16 |
+
display:block;
|
| 17 |
+
}
|
| 18 |
+
"""
|
| 19 |
+
|
| 20 |
+
with gr.Blocks(css=css) as demo:
|
| 21 |
+
gr.Markdown('Wisdom.AI'),
|
| 22 |
+
gr.Image('misc/wisdom.jpg', height=600, width=400)
|
| 23 |
+
with gr.Row():
|
| 24 |
+
inp = gr.Textbox('Що б ви хотіли дізнатися у мудрого?')
|
| 25 |
+
out = gr.Textbox('Мудрий каже...')
|
| 26 |
+
|
| 27 |
+
btn = gr.Button('Спитати')
|
| 28 |
+
btn.click(fn=perform_qa, inputs=inp, outputs=out)
|
| 29 |
+
|
| 30 |
+
if __name__ == "__main__":
|
| 31 |
+
demo.launch()
|
requirements.txt
CHANGED
|
@@ -5,4 +5,6 @@ langchain-openai
|
|
| 5 |
chromadb
|
| 6 |
openai
|
| 7 |
sentence_transformers
|
| 8 |
-
pypdf
|
|
|
|
|
|
|
|
|
| 5 |
chromadb
|
| 6 |
openai
|
| 7 |
sentence_transformers
|
| 8 |
+
pypdf
|
| 9 |
+
gradio
|
| 10 |
+
gdown
|
src/.env
DELETED
|
@@ -1 +0,0 @@
|
|
| 1 |
-
OPENAI_API_KEY=
|
|
|
|
|
|
src/__init__.py
ADDED
|
File without changes
|
src/chains.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langchain_core.output_parsers import StrOutputParser
|
| 2 |
+
from langchain_core.runnables import RunnablePassthrough, RunnableLambda
|
| 3 |
+
|
| 4 |
+
from langchain_openai import ChatOpenAI
|
| 5 |
+
from langchain.prompts import PromptTemplate
|
| 6 |
+
from langchain_community.utilities import GoogleSerperAPIWrapper
|
| 7 |
+
|
| 8 |
+
CUSTOM_RAG_PROMPT = """
|
| 9 |
+
Використай наступні **надійні** елементи, для того, щоб відповісти на питання в кінці.
|
| 10 |
+
Якщо вони не містять відповіді, зверни увагу на відповідь з інтернету, хоча вона може бути не надійною.
|
| 11 |
+
Якщо ти не знаєш відповіді, використаши всі свої джерела, то просто скажи про це, не потрібно вигадувати відповідь.
|
| 12 |
+
Використовуй не більше трьох речень, та намагайся відповісти коротко та чітко.
|
| 13 |
+
|
| 14 |
+
{context}
|
| 15 |
+
|
| 16 |
+
Відповідь з інтернету: {internet}
|
| 17 |
+
|
| 18 |
+
Питання: {question}
|
| 19 |
+
|
| 20 |
+
Корисна відповідь:"""
|
| 21 |
+
|
| 22 |
+
CUSTOM_RAG_PROMPT = PromptTemplate.from_template(CUSTOM_RAG_PROMPT)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def documents_parser(docs):
|
| 26 |
+
return "\n\n".join(doc.page_content for doc in docs)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class PdfAndGoogleChain:
|
| 30 |
+
|
| 31 |
+
def use_google_search(self, query):
|
| 32 |
+
try:
|
| 33 |
+
return self.search.run(query)
|
| 34 |
+
except Exception as ex:
|
| 35 |
+
return 'NONE'
|
| 36 |
+
|
| 37 |
+
def __init__(self, retriever, llm_name: str = "gpt-3.5-turbo-0125"):
|
| 38 |
+
self.search = GoogleSerperAPIWrapper()
|
| 39 |
+
self.llm = ChatOpenAI(model=llm_name)
|
| 40 |
+
|
| 41 |
+
self.rag_chain = (
|
| 42 |
+
{"context": retriever | documents_parser, "internet": RunnableLambda(self.use_google_search),
|
| 43 |
+
"question": RunnablePassthrough()}
|
| 44 |
+
| CUSTOM_RAG_PROMPT
|
| 45 |
+
| self.llm
|
| 46 |
+
| StrOutputParser()
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
def answer(self, query: str):
|
| 50 |
+
return self.rag_chain.invoke(query)
|
src/clients.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langchain_openai import OpenAIEmbeddings
|
| 2 |
+
from langchain_community.vectorstores import Chroma
|
| 3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 4 |
+
from langchain_community.document_loaders import PyPDFLoader
|
| 5 |
+
import pathlib
|
| 6 |
+
import gdown
|
| 7 |
+
from .chains import PdfAndGoogleChain
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def embed_pdf(folder: str = 'data', name: str = 'book.pdf'):
|
| 11 |
+
pathlib.Path(folder).mkdir(exist_ok=True)
|
| 12 |
+
path = pathlib.Path(folder).joinpath(name)
|
| 13 |
+
if not path.exists():
|
| 14 |
+
print('Downloading book PDF.')
|
| 15 |
+
gdown.download('https://drive.google.com/file/d/1CwhFM4gInp9xV4G4sdnYE_rN0StmqQ2z/view?usp=sharing',
|
| 16 |
+
str(path))
|
| 17 |
+
loader = PyPDFLoader(str(path))
|
| 18 |
+
documents = loader.load()
|
| 19 |
+
splitter = RecursiveCharacterTextSplitter(
|
| 20 |
+
chunk_size=1000,
|
| 21 |
+
chunk_overlap=100)
|
| 22 |
+
return splitter.split_documents(
|
| 23 |
+
documents
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class AcademicClient:
|
| 28 |
+
|
| 29 |
+
def create_vectordb(self):
|
| 30 |
+
if pathlib.Path('db').exists():
|
| 31 |
+
self.vectordb = Chroma(persist_directory='db', embedding_function=OpenAIEmbeddings())
|
| 32 |
+
elif pathlib.Path('src/db').exists():
|
| 33 |
+
self.vectordb = Chroma(persist_directory='src/db', embedding_function=OpenAIEmbeddings())
|
| 34 |
+
else:
|
| 35 |
+
print('Not found cached DB. Rebuilding DB state, could use money from OPENAI!!!!')
|
| 36 |
+
raise Exception('BAAAAAAAAAAd')
|
| 37 |
+
return
|
| 38 |
+
texts = embed_pdf()
|
| 39 |
+
self.vectordb = Chroma.from_documents(
|
| 40 |
+
documents=texts,
|
| 41 |
+
embedding=OpenAIEmbeddings(),
|
| 42 |
+
persist_directory="db"
|
| 43 |
+
)
|
| 44 |
+
self.vectordb.persist()
|
| 45 |
+
|
| 46 |
+
def __init__(self):
|
| 47 |
+
self.create_vectordb()
|
| 48 |
+
self.chain = PdfAndGoogleChain(self.vectordb.as_retriever())
|
| 49 |
+
|
| 50 |
+
def answer(self, query):
|
| 51 |
+
return self.chain.answer(query)
|
src/complex.ipynb
ADDED
|
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"outputs": [],
|
| 7 |
+
"source": [
|
| 8 |
+
"import os\n",
|
| 9 |
+
"\n",
|
| 10 |
+
"from langchain_openai import OpenAIEmbeddings\n",
|
| 11 |
+
"from langchain.vectorstores import Chroma\n",
|
| 12 |
+
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
|
| 13 |
+
"from langchain_core.output_parsers import StrOutputParser\n",
|
| 14 |
+
"from langchain_core.runnables import RunnablePassthrough, RunnableLambda\n",
|
| 15 |
+
"from langchain.document_loaders import PyPDFLoader\n",
|
| 16 |
+
"from langchain_openai import ChatOpenAI\n",
|
| 17 |
+
"from dotenv import load_dotenv\n",
|
| 18 |
+
"from langchain.prompts import PromptTemplate\n",
|
| 19 |
+
"from langchain_community.utilities import GoogleSerperAPIWrapper"
|
| 20 |
+
],
|
| 21 |
+
"metadata": {
|
| 22 |
+
"collapsed": false,
|
| 23 |
+
"ExecuteTime": {
|
| 24 |
+
"end_time": "2024-04-09T13:31:50.973351600Z",
|
| 25 |
+
"start_time": "2024-04-09T13:31:48.724776800Z"
|
| 26 |
+
}
|
| 27 |
+
},
|
| 28 |
+
"id": "6ced23bcbc0e28e5"
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"cell_type": "code",
|
| 32 |
+
"execution_count": 2,
|
| 33 |
+
"id": "initial_id",
|
| 34 |
+
"metadata": {
|
| 35 |
+
"collapsed": true,
|
| 36 |
+
"ExecuteTime": {
|
| 37 |
+
"end_time": "2024-04-09T13:31:50.992692600Z",
|
| 38 |
+
"start_time": "2024-04-09T13:31:50.975349700Z"
|
| 39 |
+
}
|
| 40 |
+
},
|
| 41 |
+
"outputs": [
|
| 42 |
+
{
|
| 43 |
+
"data": {
|
| 44 |
+
"text/plain": "True"
|
| 45 |
+
},
|
| 46 |
+
"execution_count": 2,
|
| 47 |
+
"metadata": {},
|
| 48 |
+
"output_type": "execute_result"
|
| 49 |
+
}
|
| 50 |
+
],
|
| 51 |
+
"source": [
|
| 52 |
+
"load_dotenv()"
|
| 53 |
+
]
|
| 54 |
+
},
|
| 55 |
+
{
|
| 56 |
+
"cell_type": "code",
|
| 57 |
+
"execution_count": 3,
|
| 58 |
+
"outputs": [],
|
| 59 |
+
"source": [
|
| 60 |
+
"os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\""
|
| 61 |
+
],
|
| 62 |
+
"metadata": {
|
| 63 |
+
"collapsed": false,
|
| 64 |
+
"ExecuteTime": {
|
| 65 |
+
"end_time": "2024-04-09T13:31:50.996689600Z",
|
| 66 |
+
"start_time": "2024-04-09T13:31:50.989345500Z"
|
| 67 |
+
}
|
| 68 |
+
},
|
| 69 |
+
"id": "a6de359e6f0e68ac"
|
| 70 |
+
},
|
| 71 |
+
{
|
| 72 |
+
"cell_type": "code",
|
| 73 |
+
"execution_count": 4,
|
| 74 |
+
"outputs": [],
|
| 75 |
+
"source": [
|
| 76 |
+
"llm = ChatOpenAI(model=\"gpt-3.5-turbo-0125\")"
|
| 77 |
+
],
|
| 78 |
+
"metadata": {
|
| 79 |
+
"collapsed": false,
|
| 80 |
+
"ExecuteTime": {
|
| 81 |
+
"end_time": "2024-04-09T13:31:51.750122200Z",
|
| 82 |
+
"start_time": "2024-04-09T13:31:50.996689600Z"
|
| 83 |
+
}
|
| 84 |
+
},
|
| 85 |
+
"id": "3b45ee8734cc3396"
|
| 86 |
+
},
|
| 87 |
+
{
|
| 88 |
+
"cell_type": "code",
|
| 89 |
+
"execution_count": 5,
|
| 90 |
+
"outputs": [],
|
| 91 |
+
"source": [
|
| 92 |
+
"import pathlib\n",
|
| 93 |
+
"if pathlib.Path('db').exists():\n",
|
| 94 |
+
" vectordb = Chroma(persist_directory='db', embedding_function=OpenAIEmbeddings())\n",
|
| 95 |
+
"else:\n",
|
| 96 |
+
" loader = PyPDFLoader(\"../data/book.pdf\")\n",
|
| 97 |
+
" documents = loader.load()\n",
|
| 98 |
+
" splitter = RecursiveCharacterTextSplitter(\n",
|
| 99 |
+
" chunk_size=1000,\n",
|
| 100 |
+
" chunk_overlap=100)\n",
|
| 101 |
+
" texts = splitter.split_documents(\n",
|
| 102 |
+
" documents\n",
|
| 103 |
+
" )\n",
|
| 104 |
+
" vectordb = Chroma.from_documents(\n",
|
| 105 |
+
" documents=texts,\n",
|
| 106 |
+
" embedding=OpenAIEmbeddings(),\n",
|
| 107 |
+
" persist_directory=\"db\"\n",
|
| 108 |
+
" )\n",
|
| 109 |
+
" vectordb.persist()"
|
| 110 |
+
],
|
| 111 |
+
"metadata": {
|
| 112 |
+
"collapsed": false,
|
| 113 |
+
"ExecuteTime": {
|
| 114 |
+
"end_time": "2024-04-09T13:31:53.393778600Z",
|
| 115 |
+
"start_time": "2024-04-09T13:31:51.753134200Z"
|
| 116 |
+
}
|
| 117 |
+
},
|
| 118 |
+
"id": "6ecda08560566442"
|
| 119 |
+
},
|
| 120 |
+
{
|
| 121 |
+
"cell_type": "code",
|
| 122 |
+
"execution_count": 6,
|
| 123 |
+
"outputs": [],
|
| 124 |
+
"source": [
|
| 125 |
+
"custom_rag_prompt = \"\"\"\n",
|
| 126 |
+
"Використай наступні **надійні** елементи, для того, щоб відповісти на питання в кінці. \n",
|
| 127 |
+
"Якщо вони не містять відповіді, зверни увагу на відповідь з інтернету, хоча вона може бути не надійною. \n",
|
| 128 |
+
"Якщо ти не знаєш відповіді, використаши всі свої джерела, то просто скажи про це, не потрібно вигадувати відповідь.\n",
|
| 129 |
+
"Використовуй не більше трьох речень, та намагайся відповісти коротко та чітко.\n",
|
| 130 |
+
"\n",
|
| 131 |
+
"{context}\n",
|
| 132 |
+
"\n",
|
| 133 |
+
"Відповідь з інтернету: {internet}\n",
|
| 134 |
+
"\n",
|
| 135 |
+
"Питання: {question}\n",
|
| 136 |
+
"\n",
|
| 137 |
+
"Корисна відповідь:\"\"\"\n",
|
| 138 |
+
"\n",
|
| 139 |
+
"custom_rag_prompt = PromptTemplate.from_template(custom_rag_prompt)"
|
| 140 |
+
],
|
| 141 |
+
"metadata": {
|
| 142 |
+
"collapsed": false,
|
| 143 |
+
"ExecuteTime": {
|
| 144 |
+
"end_time": "2024-04-09T13:31:53.410090300Z",
|
| 145 |
+
"start_time": "2024-04-09T13:31:53.397777900Z"
|
| 146 |
+
}
|
| 147 |
+
},
|
| 148 |
+
"id": "1827a7ad093fa60a"
|
| 149 |
+
},
|
| 150 |
+
{
|
| 151 |
+
"cell_type": "code",
|
| 152 |
+
"execution_count": 18,
|
| 153 |
+
"outputs": [],
|
| 154 |
+
"source": [
|
| 155 |
+
"retriever = vectordb.as_retriever()\n",
|
| 156 |
+
"\n",
|
| 157 |
+
"search = GoogleSerperAPIWrapper()\n",
|
| 158 |
+
"def use_google_search(query):\n",
|
| 159 |
+
" try:\n",
|
| 160 |
+
" return search.run(query)\n",
|
| 161 |
+
" except Exception as ex:\n",
|
| 162 |
+
" return 'NONE'\n",
|
| 163 |
+
"\n",
|
| 164 |
+
"def documents_parser(docs):\n",
|
| 165 |
+
" return \"\\n\\n\".join(doc.page_content for doc in docs)\n",
|
| 166 |
+
"\n",
|
| 167 |
+
"rag_chain = (\n",
|
| 168 |
+
" {\"context\": retriever | documents_parser, \"internet\" : RunnableLambda(use_google_search), \"question\": RunnablePassthrough()}\n",
|
| 169 |
+
" | custom_rag_prompt\n",
|
| 170 |
+
" | llm\n",
|
| 171 |
+
" | StrOutputParser()\n",
|
| 172 |
+
")"
|
| 173 |
+
],
|
| 174 |
+
"metadata": {
|
| 175 |
+
"collapsed": false,
|
| 176 |
+
"ExecuteTime": {
|
| 177 |
+
"end_time": "2024-04-09T13:38:45.242263100Z",
|
| 178 |
+
"start_time": "2024-04-09T13:38:45.221315700Z"
|
| 179 |
+
}
|
| 180 |
+
},
|
| 181 |
+
"id": "64cb22281c854513"
|
| 182 |
+
},
|
| 183 |
+
{
|
| 184 |
+
"cell_type": "code",
|
| 185 |
+
"execution_count": 19,
|
| 186 |
+
"outputs": [
|
| 187 |
+
{
|
| 188 |
+
"data": {
|
| 189 |
+
"text/plain": "'До конституційних засад сучасної політичної системи України входять демократія, принцип верховенства права, гарантії прав та свобод громадян, розділення влади на виконавчу, законодавчу та судову.'"
|
| 190 |
+
},
|
| 191 |
+
"execution_count": 19,
|
| 192 |
+
"metadata": {},
|
| 193 |
+
"output_type": "execute_result"
|
| 194 |
+
}
|
| 195 |
+
],
|
| 196 |
+
"source": [
|
| 197 |
+
"rag_chain.invoke(\"Які конституційні засади сучасної політичної системи України ви знаєте?\")"
|
| 198 |
+
],
|
| 199 |
+
"metadata": {
|
| 200 |
+
"collapsed": false,
|
| 201 |
+
"ExecuteTime": {
|
| 202 |
+
"end_time": "2024-04-09T13:38:50.033577300Z",
|
| 203 |
+
"start_time": "2024-04-09T13:38:45.864222300Z"
|
| 204 |
+
}
|
| 205 |
+
},
|
| 206 |
+
"id": "2a36756422b7544"
|
| 207 |
+
},
|
| 208 |
+
{
|
| 209 |
+
"cell_type": "code",
|
| 210 |
+
"execution_count": 16,
|
| 211 |
+
"outputs": [],
|
| 212 |
+
"source": [
|
| 213 |
+
"stuff = search.run('Які конституційні засади сучасної політичної системи України ви знаєте?')"
|
| 214 |
+
],
|
| 215 |
+
"metadata": {
|
| 216 |
+
"collapsed": false,
|
| 217 |
+
"ExecuteTime": {
|
| 218 |
+
"end_time": "2024-04-09T13:38:33.477869300Z",
|
| 219 |
+
"start_time": "2024-04-09T13:38:32.098891500Z"
|
| 220 |
+
}
|
| 221 |
+
},
|
| 222 |
+
"id": "7c2ec151bf629265"
|
| 223 |
+
},
|
| 224 |
+
{
|
| 225 |
+
"cell_type": "code",
|
| 226 |
+
"execution_count": null,
|
| 227 |
+
"outputs": [],
|
| 228 |
+
"source": [],
|
| 229 |
+
"metadata": {
|
| 230 |
+
"collapsed": false
|
| 231 |
+
},
|
| 232 |
+
"id": "f1006423bcc8b35b"
|
| 233 |
+
}
|
| 234 |
+
],
|
| 235 |
+
"metadata": {
|
| 236 |
+
"kernelspec": {
|
| 237 |
+
"display_name": "Python 3",
|
| 238 |
+
"language": "python",
|
| 239 |
+
"name": "python3"
|
| 240 |
+
},
|
| 241 |
+
"language_info": {
|
| 242 |
+
"codemirror_mode": {
|
| 243 |
+
"name": "ipython",
|
| 244 |
+
"version": 2
|
| 245 |
+
},
|
| 246 |
+
"file_extension": ".py",
|
| 247 |
+
"mimetype": "text/x-python",
|
| 248 |
+
"name": "python",
|
| 249 |
+
"nbconvert_exporter": "python",
|
| 250 |
+
"pygments_lexer": "ipython2",
|
| 251 |
+
"version": "2.7.6"
|
| 252 |
+
}
|
| 253 |
+
},
|
| 254 |
+
"nbformat": 4,
|
| 255 |
+
"nbformat_minor": 5
|
| 256 |
+
}
|