Spaces:
Running
Running
| # Copyright (c) 2023 Amphion. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import json | |
| import os | |
| import random | |
| import shutil | |
| import time | |
| from abc import abstractmethod | |
| from pathlib import Path | |
| import accelerate | |
| import json5 | |
| import numpy as np | |
| import torch | |
| from accelerate.logging import get_logger | |
| from accelerate.utils import ProjectConfiguration | |
| from torch.utils.data import ConcatDataset, DataLoader | |
| from tqdm import tqdm | |
| from models.base.base_sampler import build_samplers | |
| from optimizer.optimizers import NoamLR | |
| class BaseTrainer(object): | |
| r"""The base trainer for all tasks. Any trainer should inherit from this class.""" | |
| def __init__(self, args=None, cfg=None): | |
| super().__init__() | |
| self.args = args | |
| self.cfg = cfg | |
| cfg.exp_name = args.exp_name | |
| # init with accelerate | |
| self._init_accelerator() | |
| self.accelerator.wait_for_everyone() | |
| # Use accelerate logger for distributed training | |
| with self.accelerator.main_process_first(): | |
| self.logger = get_logger(args.exp_name, log_level=args.log_level) | |
| # Log some info | |
| self.logger.info("=" * 56) | |
| self.logger.info("||\t\t" + "New training process started." + "\t\t||") | |
| self.logger.info("=" * 56) | |
| self.logger.info("\n") | |
| self.logger.debug(f"Using {args.log_level.upper()} logging level.") | |
| self.logger.info(f"Experiment name: {args.exp_name}") | |
| self.logger.info(f"Experiment directory: {self.exp_dir}") | |
| self.checkpoint_dir = os.path.join(self.exp_dir, "checkpoint") | |
| if self.accelerator.is_main_process: | |
| os.makedirs(self.checkpoint_dir, exist_ok=True) | |
| self.logger.debug(f"Checkpoint directory: {self.checkpoint_dir}") | |
| # init counts | |
| self.batch_count: int = 0 | |
| self.step: int = 0 | |
| self.epoch: int = 0 | |
| self.max_epoch = ( | |
| self.cfg.train.max_epoch if self.cfg.train.max_epoch > 0 else float("inf") | |
| ) | |
| self.logger.info( | |
| "Max epoch: {}".format( | |
| self.max_epoch if self.max_epoch < float("inf") else "Unlimited" | |
| ) | |
| ) | |
| # Check values | |
| if self.accelerator.is_main_process: | |
| self.__check_basic_configs() | |
| # Set runtime configs | |
| self.save_checkpoint_stride = self.cfg.train.save_checkpoint_stride | |
| self.checkpoints_path = [ | |
| [] for _ in range(len(self.save_checkpoint_stride)) | |
| ] | |
| self.keep_last = [ | |
| i if i > 0 else float("inf") for i in self.cfg.train.keep_last | |
| ] | |
| self.run_eval = self.cfg.train.run_eval | |
| # set random seed | |
| with self.accelerator.main_process_first(): | |
| start = time.monotonic_ns() | |
| self._set_random_seed(self.cfg.train.random_seed) | |
| end = time.monotonic_ns() | |
| self.logger.debug( | |
| f"Setting random seed done in {(end - start) / 1e6:.2f}ms" | |
| ) | |
| self.logger.debug(f"Random seed: {self.cfg.train.random_seed}") | |
| # setup data_loader | |
| with self.accelerator.main_process_first(): | |
| self.logger.info("Building dataset...") | |
| start = time.monotonic_ns() | |
| self.train_dataloader, self.valid_dataloader = self._build_dataloader() | |
| end = time.monotonic_ns() | |
| self.logger.info(f"Building dataset done in {(end - start) / 1e6:.2f}ms") | |
| # setup model | |
| with self.accelerator.main_process_first(): | |
| self.logger.info("Building model...") | |
| start = time.monotonic_ns() | |
| self.model = self._build_model() | |
| end = time.monotonic_ns() | |
| self.logger.debug(self.model) | |
| self.logger.info(f"Building model done in {(end - start) / 1e6:.2f}ms") | |
| self.logger.info( | |
| f"Model parameters: {self.__count_parameters(self.model)/1e6:.2f}M" | |
| ) | |
| # optimizer & scheduler | |
| with self.accelerator.main_process_first(): | |
| self.logger.info("Building optimizer and scheduler...") | |
| start = time.monotonic_ns() | |
| self.optimizer = self.__build_optimizer() | |
| self.scheduler = self.__build_scheduler() | |
| end = time.monotonic_ns() | |
| self.logger.info( | |
| f"Building optimizer and scheduler done in {(end - start) / 1e6:.2f}ms" | |
| ) | |
| # accelerate prepare | |
| self.logger.info("Initializing accelerate...") | |
| start = time.monotonic_ns() | |
| ( | |
| self.train_dataloader, | |
| self.valid_dataloader, | |
| self.model, | |
| self.optimizer, | |
| self.scheduler, | |
| ) = self.accelerator.prepare( | |
| self.train_dataloader, | |
| self.valid_dataloader, | |
| self.model, | |
| self.optimizer, | |
| self.scheduler, | |
| ) | |
| end = time.monotonic_ns() | |
| self.logger.info(f"Initializing accelerate done in {(end - start) / 1e6:.2f}ms") | |
| # create criterion | |
| with self.accelerator.main_process_first(): | |
| self.logger.info("Building criterion...") | |
| start = time.monotonic_ns() | |
| self.criterion = self._build_criterion() | |
| end = time.monotonic_ns() | |
| self.logger.info(f"Building criterion done in {(end - start) / 1e6:.2f}ms") | |
| # Resume or Finetune | |
| with self.accelerator.main_process_first(): | |
| if args.resume: | |
| ## Automatically resume according to the current exprimental name | |
| self.logger.info("Resuming from {}...".format(self.checkpoint_dir)) | |
| start = time.monotonic_ns() | |
| ckpt_path = self.__load_model( | |
| checkpoint_dir=self.checkpoint_dir, resume_type=args.resume_type | |
| ) | |
| end = time.monotonic_ns() | |
| self.logger.info( | |
| f"Resuming from checkpoint done in {(end - start) / 1e6:.2f}ms" | |
| ) | |
| self.checkpoints_path = json.load( | |
| open(os.path.join(ckpt_path, "ckpts.json"), "r") | |
| ) | |
| elif args.resume_from_ckpt_path and args.resume_from_ckpt_path != "": | |
| ## Resume from the given checkpoint path | |
| if not os.path.exists(args.resume_from_ckpt_path): | |
| raise ValueError( | |
| "[Error] The resumed checkpoint path {} don't exist.".format( | |
| args.resume_from_ckpt_path | |
| ) | |
| ) | |
| self.logger.info( | |
| "Resuming from {}...".format(args.resume_from_ckpt_path) | |
| ) | |
| start = time.monotonic_ns() | |
| ckpt_path = self.__load_model( | |
| checkpoint_path=args.resume_from_ckpt_path, | |
| resume_type=args.resume_type, | |
| ) | |
| end = time.monotonic_ns() | |
| self.logger.info( | |
| f"Resuming from checkpoint done in {(end - start) / 1e6:.2f}ms" | |
| ) | |
| # save config file path | |
| self.config_save_path = os.path.join(self.exp_dir, "args.json") | |
| ### Following are abstract methods that should be implemented in child classes ### | |
| def _build_dataset(self): | |
| r"""Build dataset for model training/validating/evaluating.""" | |
| pass | |
| def _build_criterion(): | |
| r"""Build criterion function for model loss calculation.""" | |
| pass | |
| def _build_model(self): | |
| r"""Build model for training/validating/evaluating.""" | |
| pass | |
| def _forward_step(self, batch): | |
| r"""One forward step of the neural network. This abstract method is trying to | |
| unify ``_train_step`` and ``_valid_step`` and avoid redundant implementation. | |
| However, for special case that using different forward step pattern for | |
| training and validating, you could just override this method with ``pass`` and | |
| implement ``_train_step`` and ``_valid_step`` separately. | |
| """ | |
| pass | |
| def _save_auxiliary_states(self): | |
| r"""To save some auxiliary states when saving model's ckpt""" | |
| pass | |
| ### Abstract methods end ### | |
| ### THIS IS MAIN ENTRY ### | |
| def train_loop(self): | |
| r"""Training loop. The public entry of training process.""" | |
| # Wait everyone to prepare before we move on | |
| self.accelerator.wait_for_everyone() | |
| # dump config file | |
| if self.accelerator.is_main_process: | |
| self.__dump_cfg(self.config_save_path) | |
| self.model.train() | |
| self.optimizer.zero_grad() | |
| # Wait to ensure good to go | |
| self.accelerator.wait_for_everyone() | |
| while self.epoch < self.max_epoch: | |
| self.logger.info("\n") | |
| self.logger.info("-" * 32) | |
| self.logger.info("Epoch {}: ".format(self.epoch)) | |
| ### TODO: change the return values of _train_epoch() to a loss dict, or (total_loss, loss_dict) | |
| ### It's inconvenient for the model with multiple losses | |
| # Do training & validating epoch | |
| train_loss = self._train_epoch() | |
| self.logger.info(" |- Train/Loss: {:.6f}".format(train_loss)) | |
| valid_loss = self._valid_epoch() | |
| self.logger.info(" |- Valid/Loss: {:.6f}".format(valid_loss)) | |
| self.accelerator.log( | |
| {"Epoch/Train Loss": train_loss, "Epoch/Valid Loss": valid_loss}, | |
| step=self.epoch, | |
| ) | |
| self.accelerator.wait_for_everyone() | |
| # TODO: what is scheduler? | |
| self.scheduler.step(valid_loss) # FIXME: use epoch track correct? | |
| # Check if hit save_checkpoint_stride and run_eval | |
| run_eval = False | |
| if self.accelerator.is_main_process: | |
| save_checkpoint = False | |
| hit_dix = [] | |
| for i, num in enumerate(self.save_checkpoint_stride): | |
| if self.epoch % num == 0: | |
| save_checkpoint = True | |
| hit_dix.append(i) | |
| run_eval |= self.run_eval[i] | |
| self.accelerator.wait_for_everyone() | |
| if self.accelerator.is_main_process and save_checkpoint: | |
| path = os.path.join( | |
| self.checkpoint_dir, | |
| "epoch-{:04d}_step-{:07d}_loss-{:.6f}".format( | |
| self.epoch, self.step, train_loss | |
| ), | |
| ) | |
| self.tmp_checkpoint_save_path = path | |
| self.accelerator.save_state(path) | |
| print(f"save checkpoint in {path}") | |
| json.dump( | |
| self.checkpoints_path, | |
| open(os.path.join(path, "ckpts.json"), "w"), | |
| ensure_ascii=False, | |
| indent=4, | |
| ) | |
| self._save_auxiliary_states() | |
| # Remove old checkpoints | |
| to_remove = [] | |
| for idx in hit_dix: | |
| self.checkpoints_path[idx].append(path) | |
| while len(self.checkpoints_path[idx]) > self.keep_last[idx]: | |
| to_remove.append((idx, self.checkpoints_path[idx].pop(0))) | |
| # Search conflicts | |
| total = set() | |
| for i in self.checkpoints_path: | |
| total |= set(i) | |
| do_remove = set() | |
| for idx, path in to_remove[::-1]: | |
| if path in total: | |
| self.checkpoints_path[idx].insert(0, path) | |
| else: | |
| do_remove.add(path) | |
| # Remove old checkpoints | |
| for path in do_remove: | |
| shutil.rmtree(path, ignore_errors=True) | |
| self.logger.debug(f"Remove old checkpoint: {path}") | |
| self.accelerator.wait_for_everyone() | |
| if run_eval: | |
| # TODO: run evaluation | |
| pass | |
| # Update info for each epoch | |
| self.epoch += 1 | |
| # Finish training and save final checkpoint | |
| self.accelerator.wait_for_everyone() | |
| if self.accelerator.is_main_process: | |
| self.accelerator.save_state( | |
| os.path.join( | |
| self.checkpoint_dir, | |
| "final_epoch-{:04d}_step-{:07d}_loss-{:.6f}".format( | |
| self.epoch, self.step, valid_loss | |
| ), | |
| ) | |
| ) | |
| self._save_auxiliary_states() | |
| self.accelerator.end_training() | |
| ### Following are methods that can be used directly in child classes ### | |
| def _train_epoch(self): | |
| r"""Training epoch. Should return average loss of a batch (sample) over | |
| one epoch. See ``train_loop`` for usage. | |
| """ | |
| self.model.train() | |
| epoch_sum_loss: float = 0.0 | |
| epoch_step: int = 0 | |
| for batch in tqdm( | |
| self.train_dataloader, | |
| desc=f"Training Epoch {self.epoch}", | |
| unit="batch", | |
| colour="GREEN", | |
| leave=False, | |
| dynamic_ncols=True, | |
| smoothing=0.04, | |
| disable=not self.accelerator.is_main_process, | |
| ): | |
| # Do training step and BP | |
| with self.accelerator.accumulate(self.model): | |
| loss = self._train_step(batch) | |
| self.accelerator.backward(loss) | |
| self.optimizer.step() | |
| self.optimizer.zero_grad() | |
| self.batch_count += 1 | |
| # Update info for each step | |
| # TODO: step means BP counts or batch counts? | |
| if self.batch_count % self.cfg.train.gradient_accumulation_step == 0: | |
| epoch_sum_loss += loss | |
| self.accelerator.log( | |
| { | |
| "Step/Train Loss": loss, | |
| "Step/Learning Rate": self.optimizer.param_groups[0]["lr"], | |
| }, | |
| step=self.step, | |
| ) | |
| self.step += 1 | |
| epoch_step += 1 | |
| self.accelerator.wait_for_everyone() | |
| return ( | |
| epoch_sum_loss | |
| / len(self.train_dataloader) | |
| * self.cfg.train.gradient_accumulation_step | |
| ) | |
| def _valid_epoch(self): | |
| r"""Testing epoch. Should return average loss of a batch (sample) over | |
| one epoch. See ``train_loop`` for usage. | |
| """ | |
| self.model.eval() | |
| epoch_sum_loss = 0.0 | |
| for batch in tqdm( | |
| self.valid_dataloader, | |
| desc=f"Validating Epoch {self.epoch}", | |
| unit="batch", | |
| colour="GREEN", | |
| leave=False, | |
| dynamic_ncols=True, | |
| smoothing=0.04, | |
| disable=not self.accelerator.is_main_process, | |
| ): | |
| batch_loss = self._valid_step(batch) | |
| epoch_sum_loss += batch_loss.item() | |
| self.accelerator.wait_for_everyone() | |
| return epoch_sum_loss / len(self.valid_dataloader) | |
| def _train_step(self, batch): | |
| r"""Training forward step. Should return average loss of a sample over | |
| one batch. Provoke ``_forward_step`` is recommended except for special case. | |
| See ``_train_epoch`` for usage. | |
| """ | |
| return self._forward_step(batch) | |
| def _valid_step(self, batch): | |
| r"""Testing forward step. Should return average loss of a sample over | |
| one batch. Provoke ``_forward_step`` is recommended except for special case. | |
| See ``_test_epoch`` for usage. | |
| """ | |
| return self._forward_step(batch) | |
| def __load_model( | |
| self, | |
| checkpoint_dir: str = None, | |
| checkpoint_path: str = None, | |
| resume_type: str = "", | |
| ): | |
| r"""Load model from checkpoint. If checkpoint_path is None, it will | |
| load the latest checkpoint in checkpoint_dir. If checkpoint_path is not | |
| None, it will load the checkpoint specified by checkpoint_path. **Only use this | |
| method after** ``accelerator.prepare()``. | |
| """ | |
| if checkpoint_path is None: | |
| ls = [str(i) for i in Path(checkpoint_dir).glob("*")] | |
| ls.sort(key=lambda x: int(x.split("_")[-3].split("-")[-1]), reverse=True) | |
| checkpoint_path = ls[0] | |
| self.logger.info("Resume from {}...".format(checkpoint_path)) | |
| if resume_type in ["resume", ""]: | |
| # Load all the things, including model weights, optimizer, scheduler, and random states. | |
| self.accelerator.load_state(input_dir=checkpoint_path) | |
| # set epoch and step | |
| self.epoch = int(checkpoint_path.split("_")[-3].split("-")[-1]) + 1 | |
| self.step = int(checkpoint_path.split("_")[-2].split("-")[-1]) + 1 | |
| elif resume_type == "finetune": | |
| # Load only the model weights | |
| accelerate.load_checkpoint_and_dispatch( | |
| self.accelerator.unwrap_model(self.model), | |
| os.path.join(checkpoint_path, "pytorch_model.bin"), | |
| ) | |
| self.logger.info("Load model weights for finetune...") | |
| else: | |
| raise ValueError("Resume_type must be `resume` or `finetune`.") | |
| return checkpoint_path | |
| # TODO: LEGACY CODE | |
| def _build_dataloader(self): | |
| Dataset, Collator = self._build_dataset() | |
| # build dataset instance for each dataset and combine them by ConcatDataset | |
| datasets_list = [] | |
| for dataset in self.cfg.dataset: | |
| subdataset = Dataset(self.cfg, dataset, is_valid=False) | |
| datasets_list.append(subdataset) | |
| train_dataset = ConcatDataset(datasets_list) | |
| train_collate = Collator(self.cfg) | |
| _, batch_sampler = build_samplers(train_dataset, self.cfg, self.logger, "train") | |
| self.logger.debug(f"train batch_sampler: {list(batch_sampler)}") | |
| self.logger.debug(f"length: {train_dataset.cumulative_sizes}") | |
| # TODO: use config instead of (sampler, shuffle, drop_last, batch_size) | |
| train_loader = DataLoader( | |
| train_dataset, | |
| collate_fn=train_collate, | |
| batch_sampler=batch_sampler, | |
| num_workers=self.cfg.train.dataloader.num_worker, | |
| pin_memory=self.cfg.train.dataloader.pin_memory, | |
| ) | |
| # Build valid dataloader | |
| datasets_list = [] | |
| for dataset in self.cfg.dataset: | |
| subdataset = Dataset(self.cfg, dataset, is_valid=True) | |
| datasets_list.append(subdataset) | |
| valid_dataset = ConcatDataset(datasets_list) | |
| valid_collate = Collator(self.cfg) | |
| _, batch_sampler = build_samplers(valid_dataset, self.cfg, self.logger, "valid") | |
| self.logger.debug(f"valid batch_sampler: {list(batch_sampler)}") | |
| self.logger.debug(f"length: {valid_dataset.cumulative_sizes}") | |
| valid_loader = DataLoader( | |
| valid_dataset, | |
| collate_fn=valid_collate, | |
| batch_sampler=batch_sampler, | |
| num_workers=self.cfg.train.dataloader.num_worker, | |
| pin_memory=self.cfg.train.dataloader.pin_memory, | |
| ) | |
| return train_loader, valid_loader | |
| def _set_random_seed(seed): | |
| r"""Set random seed for all possible random modules.""" | |
| random.seed(seed) | |
| np.random.seed(seed) | |
| torch.random.manual_seed(seed) | |
| def _check_nan(self, loss, y_pred, y_gt): | |
| if torch.any(torch.isnan(loss)): | |
| self.logger.fatal("Fatal Error: Training is down since loss has Nan!") | |
| self.logger.error("loss = {:.6f}".format(loss.item()), in_order=True) | |
| if torch.any(torch.isnan(y_pred)): | |
| self.logger.error( | |
| f"y_pred has Nan: {torch.any(torch.isnan(y_pred))}", in_order=True | |
| ) | |
| else: | |
| self.logger.debug( | |
| f"y_pred has Nan: {torch.any(torch.isnan(y_pred))}", in_order=True | |
| ) | |
| if torch.any(torch.isnan(y_gt)): | |
| self.logger.error( | |
| f"y_gt has Nan: {torch.any(torch.isnan(y_gt))}", in_order=True | |
| ) | |
| else: | |
| self.logger.debug( | |
| f"y_gt has nan: {torch.any(torch.isnan(y_gt))}", in_order=True | |
| ) | |
| if torch.any(torch.isnan(y_pred)): | |
| self.logger.error(f"y_pred: {y_pred}", in_order=True) | |
| else: | |
| self.logger.debug(f"y_pred: {y_pred}", in_order=True) | |
| if torch.any(torch.isnan(y_gt)): | |
| self.logger.error(f"y_gt: {y_gt}", in_order=True) | |
| else: | |
| self.logger.debug(f"y_gt: {y_gt}", in_order=True) | |
| # TODO: still OK to save tracking? | |
| self.accelerator.end_training() | |
| raise RuntimeError("Loss has Nan! See log for more info.") | |
| ### Protected methods end ### | |
| ## Following are private methods ## | |
| ## !!! These are inconvenient for GAN-based model training. It'd be better to move these to svc_trainer.py if needed. | |
| def __build_optimizer(self): | |
| r"""Build optimizer for model.""" | |
| # Make case-insensitive matching | |
| if self.cfg.train.optimizer.lower() == "adadelta": | |
| optimizer = torch.optim.Adadelta( | |
| self.model.parameters(), **self.cfg.train.adadelta | |
| ) | |
| self.logger.info("Using Adadelta optimizer.") | |
| elif self.cfg.train.optimizer.lower() == "adagrad": | |
| optimizer = torch.optim.Adagrad( | |
| self.model.parameters(), **self.cfg.train.adagrad | |
| ) | |
| self.logger.info("Using Adagrad optimizer.") | |
| elif self.cfg.train.optimizer.lower() == "adam": | |
| optimizer = torch.optim.Adam(self.model.parameters(), **self.cfg.train.adam) | |
| self.logger.info("Using Adam optimizer.") | |
| elif self.cfg.train.optimizer.lower() == "adamw": | |
| optimizer = torch.optim.AdamW( | |
| self.model.parameters(), **self.cfg.train.adamw | |
| ) | |
| elif self.cfg.train.optimizer.lower() == "sparseadam": | |
| optimizer = torch.optim.SparseAdam( | |
| self.model.parameters(), **self.cfg.train.sparseadam | |
| ) | |
| elif self.cfg.train.optimizer.lower() == "adamax": | |
| optimizer = torch.optim.Adamax( | |
| self.model.parameters(), **self.cfg.train.adamax | |
| ) | |
| elif self.cfg.train.optimizer.lower() == "asgd": | |
| optimizer = torch.optim.ASGD(self.model.parameters(), **self.cfg.train.asgd) | |
| elif self.cfg.train.optimizer.lower() == "lbfgs": | |
| optimizer = torch.optim.LBFGS( | |
| self.model.parameters(), **self.cfg.train.lbfgs | |
| ) | |
| elif self.cfg.train.optimizer.lower() == "nadam": | |
| optimizer = torch.optim.NAdam( | |
| self.model.parameters(), **self.cfg.train.nadam | |
| ) | |
| elif self.cfg.train.optimizer.lower() == "radam": | |
| optimizer = torch.optim.RAdam( | |
| self.model.parameters(), **self.cfg.train.radam | |
| ) | |
| elif self.cfg.train.optimizer.lower() == "rmsprop": | |
| optimizer = torch.optim.RMSprop( | |
| self.model.parameters(), **self.cfg.train.rmsprop | |
| ) | |
| elif self.cfg.train.optimizer.lower() == "rprop": | |
| optimizer = torch.optim.Rprop( | |
| self.model.parameters(), **self.cfg.train.rprop | |
| ) | |
| elif self.cfg.train.optimizer.lower() == "sgd": | |
| optimizer = torch.optim.SGD(self.model.parameters(), **self.cfg.train.sgd) | |
| else: | |
| raise NotImplementedError( | |
| f"Optimizer {self.cfg.train.optimizer} not supported yet!" | |
| ) | |
| return optimizer | |
| def __build_scheduler(self): | |
| r"""Build scheduler for optimizer.""" | |
| # Make case-insensitive matching | |
| if self.cfg.train.scheduler.lower() == "lambdalr": | |
| scheduler = torch.optim.lr_scheduler.LambdaLR( | |
| self.optimizer, **self.cfg.train.lambdalr | |
| ) | |
| elif self.cfg.train.scheduler.lower() == "multiplicativelr": | |
| scheduler = torch.optim.lr_scheduler.MultiplicativeLR( | |
| self.optimizer, **self.cfg.train.multiplicativelr | |
| ) | |
| elif self.cfg.train.scheduler.lower() == "steplr": | |
| scheduler = torch.optim.lr_scheduler.StepLR( | |
| self.optimizer, **self.cfg.train.steplr | |
| ) | |
| elif self.cfg.train.scheduler.lower() == "multisteplr": | |
| scheduler = torch.optim.lr_scheduler.MultiStepLR( | |
| self.optimizer, **self.cfg.train.multisteplr | |
| ) | |
| elif self.cfg.train.scheduler.lower() == "constantlr": | |
| scheduler = torch.optim.lr_scheduler.ConstantLR( | |
| self.optimizer, **self.cfg.train.constantlr | |
| ) | |
| elif self.cfg.train.scheduler.lower() == "linearlr": | |
| scheduler = torch.optim.lr_scheduler.LinearLR( | |
| self.optimizer, **self.cfg.train.linearlr | |
| ) | |
| elif self.cfg.train.scheduler.lower() == "exponentiallr": | |
| scheduler = torch.optim.lr_scheduler.ExponentialLR( | |
| self.optimizer, **self.cfg.train.exponentiallr | |
| ) | |
| elif self.cfg.train.scheduler.lower() == "polynomiallr": | |
| scheduler = torch.optim.lr_scheduler.PolynomialLR( | |
| self.optimizer, **self.cfg.train.polynomiallr | |
| ) | |
| elif self.cfg.train.scheduler.lower() == "cosineannealinglr": | |
| scheduler = torch.optim.lr_scheduler.CosineAnnealingLR( | |
| self.optimizer, **self.cfg.train.cosineannealinglr | |
| ) | |
| elif self.cfg.train.scheduler.lower() == "sequentiallr": | |
| scheduler = torch.optim.lr_scheduler.SequentialLR( | |
| self.optimizer, **self.cfg.train.sequentiallr | |
| ) | |
| elif self.cfg.train.scheduler.lower() == "reducelronplateau": | |
| scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( | |
| self.optimizer, **self.cfg.train.reducelronplateau | |
| ) | |
| elif self.cfg.train.scheduler.lower() == "cycliclr": | |
| scheduler = torch.optim.lr_scheduler.CyclicLR( | |
| self.optimizer, **self.cfg.train.cycliclr | |
| ) | |
| elif self.cfg.train.scheduler.lower() == "onecyclelr": | |
| scheduler = torch.optim.lr_scheduler.OneCycleLR( | |
| self.optimizer, **self.cfg.train.onecyclelr | |
| ) | |
| elif self.cfg.train.scheduler.lower() == "cosineannearingwarmrestarts": | |
| scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts( | |
| self.optimizer, **self.cfg.train.cosineannearingwarmrestarts | |
| ) | |
| elif self.cfg.train.scheduler.lower() == "noamlr": | |
| scheduler = NoamLR(self.optimizer, **self.cfg.train.lr_scheduler) | |
| else: | |
| raise NotImplementedError( | |
| f"Scheduler {self.cfg.train.scheduler} not supported yet!" | |
| ) | |
| return scheduler | |
| def _init_accelerator(self): | |
| self.exp_dir = os.path.join( | |
| os.path.abspath(self.cfg.log_dir), self.args.exp_name | |
| ) | |
| project_config = ProjectConfiguration( | |
| project_dir=self.exp_dir, | |
| logging_dir=os.path.join(self.exp_dir, "log"), | |
| ) | |
| self.accelerator = accelerate.Accelerator( | |
| gradient_accumulation_steps=self.cfg.train.gradient_accumulation_step, | |
| log_with=self.cfg.train.tracker, | |
| project_config=project_config, | |
| ) | |
| if self.accelerator.is_main_process: | |
| os.makedirs(project_config.project_dir, exist_ok=True) | |
| os.makedirs(project_config.logging_dir, exist_ok=True) | |
| with self.accelerator.main_process_first(): | |
| self.accelerator.init_trackers(self.args.exp_name) | |
| def __check_basic_configs(self): | |
| if self.cfg.train.gradient_accumulation_step <= 0: | |
| self.logger.fatal("Invalid gradient_accumulation_step value!") | |
| self.logger.error( | |
| f"Invalid gradient_accumulation_step value: {self.cfg.train.gradient_accumulation_step}. It should be positive." | |
| ) | |
| self.accelerator.end_training() | |
| raise ValueError( | |
| f"Invalid gradient_accumulation_step value: {self.cfg.train.gradient_accumulation_step}. It should be positive." | |
| ) | |
| # TODO: check other values | |
| def __count_parameters(model): | |
| model_param = 0.0 | |
| if isinstance(model, dict): | |
| for key, value in model.items(): | |
| model_param += sum(p.numel() for p in model[key].parameters()) | |
| else: | |
| model_param = sum(p.numel() for p in model.parameters()) | |
| return model_param | |
| def __dump_cfg(self, path): | |
| os.makedirs(os.path.dirname(path), exist_ok=True) | |
| json5.dump( | |
| self.cfg, | |
| open(path, "w"), | |
| indent=4, | |
| sort_keys=True, | |
| ensure_ascii=False, | |
| quote_keys=True, | |
| ) | |
| ### Private methods end ### | |