import requests
import os
import google.generativeai as genai

from typing import List
from FAPS.utils import encode_image
from PIL import Image

class Rag:

    def get_answer_from_gemini(self, query, imagePaths):

        print(f"Querying Gemini for query={query}, imagePaths={imagePaths}")

        try:
            genai.configure(api_key=os.environ['GEMINI_API_KEY'])
            model = genai.GenerativeModel('gemini-1.5-flash')
            
            images = [Image.open(path) for path in imagePaths]
            
            chat = model.start_chat()

            response = chat.send_message([*images, query])

            answer = response.text

            print(answer)
            
            return answer
        
        except Exception as e:
            print(f"An error occurred while querying Gemini: {e}")
            return f"Error: {str(e)}"
        

    # def get_answer_from_openai(self, query, imagesPaths):
    #     print(f"Querying OpenAI for query={query}, imagesPaths={imagesPaths}")

    #     try:    
    #         payload = self.__get_openai_api_payload(query, imagesPaths)

    #         headers = {
    #             "Content-Type": "application/json",
    #             "Authorization": f"Bearer {os.environ['OPENAI_API_KEY']}"
    #         }
    
    #         response = requests.post(
    #             url="https://api.openai.com/v1/chat/completions",
    #             headers=headers,
    #             json=payload
    #         )
    #         response.raise_for_status()  # Raise an HTTPError for bad responses
    
    #         answer = response.json()["choices"][0]["message"]["content"]
    
    #         print(answer)
    
    #         return answer
    
    #     except Exception as e:
    #         print(f"An error occurred while querying OpenAI: {e}")
    #         return None


    # def __get_openai_api_payload(self, query:str, imagesPaths:List[str]):
    #     image_payload = []

    #     for imagePath in imagesPaths:
    #         base64_image = encode_image(imagePath)
    #         image_payload.append({
    #             "type": "image_url",
    #             "image_url": {
    #                 "url": f"data:image/jpeg;base64,{base64_image}"
    #             }
    #         })

    #     payload = {
    #         "model": "gpt-4o",
    #         "messages": [
    #             {
    #                 "role": "user",
    #                 "content": [
    #                     {
    #                         "type": "text",
    #                         "text": query
    #                     },
    #                     *image_payload
    #                 ]
    #             }
    #         ],
    #         "max_tokens": 1024
    #     }

    #     return payload
    


# if __name__ == "__main__":
#     rag = Rag()
    
#     query = "Based on attached images, how many new cases were reported during second wave peak"
#     imagesPaths = ["covid_slides_page_8.png", "covid_slides_page_8.png"]
    
#     rag.get_answer_from_gemini(query, imagesPaths)