hsn-hts / app.py
amit01Xindus's picture
Update app.py
2bbca94 verified
import os
import pandas as pd
import json
from datetime import datetime
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import uvicorn
import requests
app = FastAPI(title="HTS to HSN Classifier", version="1.0.0")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
class ClassificationRequest(BaseModel):
hts_code_or_desc: str
class ClassificationResponse(BaseModel):
HSN_Code: str | None
HSN_Description: str | None
Confidence: str
Reasoning: str
class HuggingFaceInferenceClient:
def __init__(self, model_name: str = "meta-llama/Meta-Llama-3-8B-Instruct", api_token: str = None):
self.model_name = model_name
self.api_token = api_token or os.getenv("HF_API_TOKEN")
if not self.api_token:
raise ValueError("Hugging Face API token not provided")
self.headers = {
"Authorization": f"Bearer {self.api_token}",
"Content-Type": "application/json"
}
# Fixed API URL - use the correct inference endpoint
self.api_url = f"https://api-inference.huggingface.co/models/{self.model_name}"
def invoke(self, prompt: str) -> str:
# Fixed payload structure for Hugging Face Inference API
payload = {
"inputs": prompt,
"parameters": {
"max_new_tokens": 500,
"temperature": 0.6,
"top_p": 0.95,
"return_full_text": False
}
}
try:
response = requests.post(self.api_url, json=payload, headers=self.headers, timeout=60)
response.raise_for_status()
data = response.json()
# Handle different response formats
if isinstance(data, list) and len(data) > 0:
if "generated_text" in data[0]:
return data[0]["generated_text"]
elif "text" in data[0]:
return data[0]["text"]
elif isinstance(data, dict):
if "generated_text" in data:
return data["generated_text"]
elif "text" in data:
return data["text"]
return str(data)
except requests.exceptions.RequestException as e:
print(f"API request failed: {e}")
raise Exception(f"Hugging Face API error: {e}")
except json.JSONDecodeError as e:
print(f"JSON decode error: {e}")
raise Exception(f"Invalid JSON response from API: {e}")
@app.on_event("startup")
async def startup_event():
try:
global vs_hts, vs_hsn, df_hts, df_hsn, llm_client, hts_code_col, hts_desc_col, hsn_code_col, hsn_desc_col
hts_path = "data/Htsdata.xlsx"
hsn_path = "data/HSN_SAC.xlsx"
cached_hts_vector_path = "data/faiss_hts_store"
cached_hsn_vector_path = "data/faiss_hsn_store"
print("Loading HSN data from:", hsn_path)
hts_code_col = "HTS Number"
hts_desc_col = "Description"
hsn_code_col = "HSN_CD"
hsn_desc_col = "HSN_Description"
df_hts = pd.read_excel(hts_path)
df_hts.columns = df_hts.columns.str.strip()
df_hsn = pd.read_excel(hsn_path)
df_hsn.columns = df_hsn.columns.str.strip()
df_hsn[hsn_code_col] = df_hsn[hsn_code_col].astype(str)
# Initialize with correct model name
llm_client = HuggingFaceInferenceClient(model_name="meta-llama/Meta-Llama-3-8B-Instruct")
print("✅ Application started successfully!")
except Exception as e:
print(f"❌ Startup error: {e}")
raise e
@app.get("/health")
async def health_check():
return {"status": "healthy", "timestamp": datetime.now().isoformat()}
def extract_structure(code: str):
code = "".join(filter(str.isdigit, str(code)))
return {
"chapter": code[:4] if len(code) >= 4 else None,
"heading": code[:6] if len(code) >= 6 else None,
"hsn8": code[:8] if len(code) >= 8 else code,
"full": code
}
def extract_json_from_text(text: str) -> dict:
"""Extract JSON from text response, handling various formats."""
text = text.strip()
# Find JSON content between braces
start_idx = text.find('{')
end_idx = text.rfind('}')
if start_idx != -1 and end_idx != -1 and start_idx < end_idx:
json_str = text[start_idx:end_idx + 1]
try:
return json.loads(json_str)
except json.JSONDecodeError:
pass
# If JSON extraction fails, try to parse key-value pairs
try:
lines = text.split('\n')
result = {}
for line in lines:
if ':' in line:
key, value = line.split(':', 1)
key = key.strip().strip('"\'')
value = value.strip().strip('",\'')
if key in ['HSN_Code', 'HSN_Description', 'Confidence', 'Reasoning']:
result[key] = value
if len(result) >= 2: # At least some keys found
return result
except:
pass
return None
def map_hts_to_hsn(hts_code_or_desc: str):
reasoning_parts = []
if hts_code_or_desc.isdigit():
struct = extract_structure(hts_code_or_desc)
reasoning_parts.append(f"Input HTS code: {struct['full']}")
hts_match = df_hts[df_hts[hts_code_col].astype(str).str.startswith(struct["chapter"])]
hts_desc_list = hts_match[hts_desc_col].head(3).tolist() if not hts_match.empty else []
hts_desc_text = "; ".join(hts_desc_list) if hts_desc_list else "No HTS description found."
reasoning_parts.append(f"HTS Chapter {struct['chapter']}: {hts_desc_text}")
hsn_match = df_hsn[df_hsn[hsn_code_col] == struct["hsn8"]]
if not hsn_match.empty:
best_match = hsn_match.iloc[0]
reasoning_parts.append(f"Exact 8-digit HSN {struct['hsn8']} found.")
return {
"HSN_Code": best_match[hsn_code_col],
"HSN_Description": best_match[hsn_desc_col],
"Confidence": "High",
"Reasoning": " ".join(reasoning_parts)
}
fallback_heading_match = df_hsn[df_hsn[hsn_code_col].str.startswith(struct["heading"])]
if not fallback_heading_match.empty:
fallback_heading = fallback_heading_match.iloc[0]
reasoning_parts.append(f"No exact 8-digit HSN. Fallback heading {struct['heading']} found.")
# Improved prompt with better formatting
system_prompt = "You are an expert in Indian HSN classification. Respond only with valid JSON containing the keys: HSN_Code, HSN_Description, Confidence, Reasoning."
user_prompt = f"""
Input HTS code: {struct['full']}
HTS Description: {hts_desc_text}
Fallback HSN heading: {fallback_heading[hsn_code_col]} - {fallback_heading[hsn_desc_col]}
Based on this information, provide the most appropriate 8-digit HSN code and description.
Required JSON format:
{{
"HSN_Code": "XXXXXXXX",
"HSN_Description": "description here",
"Confidence": "High/Medium/Low",
"Reasoning": "explanation here"
}}
"""
full_prompt = f"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>\n{user_prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n"
try:
llm_response = llm_client.invoke(full_prompt).strip()
print(f"LLM Response: {llm_response}") # Debug logging
parsed_response = extract_json_from_text(llm_response)
if parsed_response and all(key in parsed_response for key in ["HSN_Code", "HSN_Description"]):
# Ensure all required keys are present with defaults
return {
"HSN_Code": parsed_response.get("HSN_Code"),
"HSN_Description": parsed_response.get("HSN_Description"),
"Confidence": parsed_response.get("Confidence", "Medium"),
"Reasoning": parsed_response.get("Reasoning", "LLM classification")
}
else:
print(f"Invalid LLM response format: {parsed_response}")
except Exception as e:
print(f"LLM failed: {e}")
# Fallback if LLM fails
return {
"HSN_Code": fallback_heading[hsn_code_col],
"HSN_Description": fallback_heading[hsn_desc_col],
"Confidence": "Medium",
"Reasoning": " ".join(reasoning_parts) + " LLM failed, using fallback 6-digit heading."
}
chapter_match = df_hsn[df_hsn[hsn_code_col].str.startswith(struct["chapter"][:4])]
if not chapter_match.empty:
best_match = chapter_match.iloc[0]
reasoning_parts.append(f"No heading match. Fallback to chapter {struct['chapter'][:4]}.")
return {
"HSN_Code": best_match[hsn_code_col],
"HSN_Description": best_match[hsn_desc_col],
"Confidence": "Low",
"Reasoning": " ".join(reasoning_parts)
}
return {
"HSN_Code": None,
"HSN_Description": None,
"Confidence": "Low",
"Reasoning": " ".join(reasoning_parts) + " No HSN match found."
}
else:
reasoning_parts.append("Input is description. Semantic search not implemented for Hugging Face deployment.")
return {"HSN_Code": None, "HSN_Description": None, "Confidence": "Low",
"Reasoning": "Description search not available in this deployment."}
@app.post("/classify", response_model=ClassificationResponse)
async def classify_hts(request: ClassificationRequest):
try:
result = map_hts_to_hsn(request.hts_code_or_desc)
return result
except Exception as e:
raise HTTPException(status_code=500, detail=f"Classification error: {str(e)}")
@app.get("/")
async def root():
return {"message": "HTS to HSN Classification API", "status": "running"}
if __name__ == "__main__":
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)